GSI Helmholtz Center for Heavy Ion Research, Department of Biophysics, Darmstadt, Germany.
TU München, Klinikum Rechts der Isar, München, Germany.
Sci Rep. 2018 Oct 30;8(1):16063. doi: 10.1038/s41598-018-34323-9.
DNA double strand breaks (DSB) play a pivotal role for cellular damage, which is a hazard encountered in toxicology and radiation protection, but also exploited e.g. in eradicating tumors in radiation therapy. It is still debated whether and in how far clustering of such DNA lesions leads to an enhanced severity of induced damage. Here we investigate - using focused spots of ionizing radiation as damaging agent - the spatial extension of DNA lesion patterns causing cell inactivation. We find that clustering of DNA damage on both the nm and µm scale leads to enhanced inactivation compared to more homogeneous lesion distributions. A biophysical model interprets these observations in terms of enhanced DSB production and DSB interaction, respectively. We decompose the overall effects quantitatively into contributions from these lesion formation processes, concluding that both processes coexist and need to be considered for determining the resulting damage on the cellular level.
DNA 双链断裂(DSB)在细胞损伤中起着关键作用,这种损伤在毒理学和辐射防护中很常见,但也被用于例如在放射治疗中消灭肿瘤。目前仍存在争议,即这种 DNA 损伤的聚集是否以及在何种程度上导致诱导损伤的严重程度增加。在这里,我们使用电离辐射的聚焦点作为损伤剂,研究导致细胞失活的 DNA 损伤模式的空间扩展。我们发现,与更均匀的损伤分布相比,纳米级和微米级的 DNA 损伤聚集会导致更强的失活。一个生物物理模型分别从 DSB 产生和 DSB 相互作用的角度解释了这些观察结果。我们将这些整体效应定量分解为这些损伤形成过程的贡献,得出的结论是这两个过程同时存在,需要在确定细胞水平上的损伤时加以考虑。