Suppr超能文献

使用新型序数学习模型ADPacer通过多模态神经影像对阿尔茨海默病进展的早期预测

Early Prediction of Progression to Alzheimer's Disease using Multi-Modality Neuroimages by a Novel Ordinal Learning Model ADPacer.

作者信息

Wang Lujia, Zheng Zhiyang, Su Yi, Chen Kewei, Weidman David, Wu Teresa, Lo ShihChung, Lure Fleming, Li Jing

机构信息

H. Hilton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, GA USA.

Banner Alzheimer's Institute, AZ USA.

出版信息

IISE Trans Healthc Syst Eng. 2024;14(2):167-177. doi: 10.1080/24725579.2023.2249487. Epub 2023 Aug 29.

Abstract

Machine learning has shown great promise for integrating multi-modality neuroimaging datasets to predict the risk of progression/conversion to Alzheimer's Disease (AD) for individuals with Mild Cognitive Impairment (MCI). Most existing work aims to classify MCI patients into converters versus non-converters using a pre-defined timeframe. The limitation is a lack of granularity in differentiating MCI patients who convert at different paces. Progression pace prediction has important clinical values, which allow from more personalized interventional strategies, better preparation of patients and their caregivers, and facilitation of patient selection in clinical trials. We proposed a novel ADPacer model which formulated the pace prediction into an ordinal learning problem with a unique capability of leveraging training samples with label ambiguity to augment the training set. This capability differentiates ADPacer from existing ordinal learning algorithms. We applied ADPacer to MCI patient cohorts from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and the Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing (AIBL), and demonstrated the superior performance of ADPacer compared to existing ordinal learning algorithms. We also integrated the SHapley Additive exPlanations (SHAP) method with ADPacer to assess the contributions from different modalities to the model prediction. The findings are consistent with the AD literature.

摘要

机器学习在整合多模态神经影像数据集以预测轻度认知障碍(MCI)个体进展为/转化为阿尔茨海默病(AD)的风险方面展现出了巨大潜力。大多数现有工作旨在使用预定义的时间框架将MCI患者分类为转化者和非转化者。其局限性在于缺乏区分以不同速度转化的MCI患者的粒度。进展速度预测具有重要的临床价值,这有助于制定更个性化的干预策略、让患者及其护理人员做好更好的准备以及在临床试验中便于患者选择。我们提出了一种新颖的ADPacer模型,该模型将速度预测表述为一个有序学习问题,具有利用标签模糊的训练样本扩充训练集的独特能力。这种能力使ADPacer有别于现有的有序学习算法。我们将ADPacer应用于来自阿尔茨海默病神经影像倡议(ADNI)和澳大利亚衰老影像、生物标志物与生活方式旗舰研究(AIBL)的MCI患者队列,并证明了ADPacer相较于现有有序学习算法的卓越性能。我们还将SHapley加法解释(SHAP)方法与ADPacer相结合,以评估不同模态对模型预测的贡献。研究结果与AD文献一致。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bd3/11374100/595e6616b9d3/nihms-1928703-f0001.jpg

相似文献

本文引用的文献

2
2022 Alzheimer's disease facts and figures.2022 年阿尔茨海默病事实和数据。
Alzheimers Dement. 2022 Apr;18(4):700-789. doi: 10.1002/alz.12638. Epub 2022 Mar 14.
4
Multi-modal neuroimaging feature fusion for diagnosis of Alzheimer's disease.用于阿尔茨海默病诊断的多模态神经影像特征融合
J Neurosci Methods. 2020 Jul 15;341:108795. doi: 10.1016/j.jneumeth.2020.108795. Epub 2020 May 22.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验