Memos George, Lidorikis Elefterios, Kokkoris George
Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Agia Paraskevi 15310, Greece.
Department of Materials Science and Engineering, University of Ioannina, Ioannina 45110, Greece.
Micromachines (Basel). 2018 Aug 19;9(8):415. doi: 10.3390/mi9080415.
The interaction of plasma with polymeric substrates generates both roughness and charging on the surface of the substrates. This work, toward the comprehension and, finally, the control of plasma-induced surface roughness, delves into the intertwined effects of surface charging, ion reflection, and secondary electron-electron emission (SEEE) on roughness evolution during plasma etching of polymeric substrates. For this purpose, a modeling framework consisting of a surface charging module, a surface etching model, and a profile evolution module is utilized. The case study is etching of a poly(methyl methacrylate) (PMMA) substrate by argon plasma. Starting from an initial surface profile with microscale roughness, the results show that the surface charging contributes to a faster elimination of the roughness compared to the case without charging, especially when ion reflection is taken into account. Ion reflection sustains roughness; without ion reflection, roughness is eliminated. Either with or without ion reflection, the effect of SEEE on the evolution of the roughness over etching time is marginal. The mutual interaction of the roughness and the charging potential is revealed through the correlation of the charging potential with a parameter combining roughness and of the surface profile. A practical implication of the current study is that the elimination or the reduction of surface charging will result in greater surface roughness of polymeric, and generally dielectric, substrates.
等离子体与聚合物基底的相互作用会在基底表面产生粗糙度和电荷。这项工作旨在理解并最终控制等离子体诱导的表面粗糙度,深入研究表面电荷、离子反射和二次电子发射(SEEE)在聚合物基底等离子体蚀刻过程中对粗糙度演变的交织影响。为此,使用了一个由表面电荷模块、表面蚀刻模型和轮廓演变模块组成的建模框架。案例研究是用氩等离子体蚀刻聚甲基丙烯酸甲酯(PMMA)基底。从具有微观粗糙度的初始表面轮廓开始,结果表明,与无电荷情况相比,表面电荷有助于更快地消除粗糙度,特别是在考虑离子反射时。离子反射会维持粗糙度;没有离子反射时,粗糙度会被消除。无论有无离子反射,SEEE对蚀刻时间内粗糙度演变的影响都很小。通过电荷电位与结合了粗糙度和表面轮廓的一个参数的相关性,揭示了粗糙度与充电电位之间的相互作用。当前研究的一个实际意义是,消除或减少表面电荷会导致聚合物基底以及一般介电基底的表面粗糙度更大。