Suppr超能文献

薄膜晶体管(TFT)紧凑模型综述

A Review for Compact Model of Thin-Film Transistors (TFTs).

作者信息

Lu Nianduan, Jiang Wenfeng, Wu Quantan, Geng Di, Li Ling, Liu Ming

机构信息

Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China.

School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China.

出版信息

Micromachines (Basel). 2018 Nov 15;9(11):599. doi: 10.3390/mi9110599.

Abstract

Thin-film transistors (TFTs) have grown into a huge industry due to their broad applications in display, radio-frequency identification tags (RFID), logical calculation, etc. In order to bridge the gap between the fabrication process and the circuit design, compact model plays an indispensable role in the development and application of TFTs. The purpose of this review is to provide a theoretical description of compact models of TFTs with different active layers, such as polysilicon, amorphous silicon, organic and In-Ga-Zn-O (IGZO) semiconductors. Special attention is paid to the surface-potential-based compact models of silicon-based TFTs. With the understanding of both the charge transport characteristics and the requirement of TFTs in organic and IGZO TFTs, we have proposed the surface-potential-based compact models and the parameter extraction techniques. The proposed models can provide accurate circuit-level performance prediction and RFID circuit design, and pass the Gummel symmetry test (GST). Finally; the outlook on the compact models of TFTs is briefly discussed.

摘要

薄膜晶体管(TFT)因其在显示器、射频识别标签(RFID)、逻辑计算等领域的广泛应用,已发展成为一个庞大的产业。为了弥合制造工艺与电路设计之间的差距,紧凑模型在TFT的开发和应用中发挥着不可或缺的作用。本综述的目的是对具有不同有源层(如多晶硅、非晶硅、有机和铟镓锌氧化物(IGZO)半导体)的TFT紧凑模型进行理论描述。特别关注基于表面势的硅基TFT紧凑模型。在了解有机和IGZO TFT中电荷传输特性以及TFT要求的基础上,我们提出了基于表面势的紧凑模型和参数提取技术。所提出的模型能够提供准确的电路级性能预测和RFID电路设计,并通过古梅尔对称性测试(GST)。最后,简要讨论了TFT紧凑模型的展望。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86b6/6267566/d097753a034b/micromachines-09-00599-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验