Rakshit Ananya, Khatua Kaustav, Shanbhag Vinit, Comba Peter, Datta Ankona
Department of Chemical Sciences , Tata Institute of Fundamental Research , 1 Homi Bhabha Road, Colaba , Mumbai-400005 , India . Email:
Department of Biochemistry , Christopher S. Bond Life Science Center , University of Missouri , Columbia , USA.
Chem Sci. 2018 Oct 2;9(41):7916-7930. doi: 10.1039/c8sc04041a. eCollection 2018 Nov 7.
Copper ions are essential for biological function yet are severely detrimental when present in excess. At the molecular level, copper ions catalyze the production of hydroxyl radicals that can irreversibly alter essential bio-molecules. Hence, selective copper chelators that can remove excess copper ions and alleviate oxidative stress will help assuage copper-overload diseases. However, most currently available chelators are non-specific leading to multiple undesirable side-effects. The challenge is to build chelators that can bind to copper ions with high affinity but leave the levels of essential metal ions unaltered. Here we report the design and development of redox-state selective Cu ion chelators that have 10 times higher conditional stability constants toward Cu compared to both Cu and other biologically relevant metal ions. This unique selectivity allows the specific removal of Cu ions that would be available only under pathophysiological metal overload and oxidative stress conditions and provides access to effective removal of the aberrant redox-cycling Cu ion pool without affecting the essential non-redox cycling Cu labile pool. We have shown that the chelators provide distinct protection against copper-induced oxidative stress and in live cells selective Cu ion chelation. Notably, the chelators afford significant reduction in Cu-induced oxidative damage in Atp7a Menkes disease model cells that have endogenously high levels of Cu ions. Finally, testing of our chelators in a live zebrafish larval model demonstrate their protective properties against copper-induced oxidative stress.
铜离子对生物功能至关重要,但过量存在时会造成严重损害。在分子水平上,铜离子催化羟基自由基的产生,而羟基自由基会不可逆地改变重要生物分子。因此,能够去除过量铜离子并减轻氧化应激的选择性铜螯合剂将有助于缓解铜过载疾病。然而,目前大多数可用的螯合剂都缺乏特异性,会导致多种不良副作用。挑战在于构建能够与铜离子高亲和力结合但不改变必需金属离子水平的螯合剂。在此,我们报告了氧化还原状态选择性铜离子螯合剂的设计与开发,与铜离子及其他生物相关金属离子相比,其对铜离子的条件稳定常数高出10倍。这种独特的选择性能够特异性去除仅在病理生理金属过载和氧化应激条件下才会出现的铜离子,并能有效去除异常的氧化还原循环铜离子池,而不影响必需的非氧化还原循环不稳定铜离子池。我们已经证明,这些螯合剂能为铜诱导的氧化应激提供独特保护,并在活细胞中实现选择性铜离子螯合。值得注意的是,这些螯合剂能显著减少铜诱导的氧化损伤,在具有内源性高水平铜离子的Atp7a门克斯病模型细胞中也是如此。最后,在活斑马鱼幼体模型中对我们的螯合剂进行测试,证明了它们对铜诱导的氧化应激具有保护作用。