Suppr超能文献

一种具有 Tx 波束成形和 Rx 时分复用功能的简化线 ICE 导管 ASIC。

A Reduced-Wire ICE Catheter ASIC With Tx Beamforming and Rx Time-Division Multiplexing.

出版信息

IEEE Trans Biomed Circuits Syst. 2018 Dec;12(6):1246-1255. doi: 10.1109/TBCAS.2018.2881909. Epub 2018 Nov 16.

Abstract

This paper presents a single chip reduced-wire active catheter application-specific integrated circuit (ASIC), equipped with programmable transmit (Tx) beamforming and receive (Rx) time-division multiplexing (TDM). The proposed front-end ASIC is designed for driving a 64-channel one-dimensional transducer array in intracardiac echocardiography (ICE) ultrasound catheters. The ASIC is implemented in 60 V 0.18-μm HV-BCD technology, integrating Tx beamformers with high voltage pulsers and Rx front end in the same chip, which occupies 2.6 × 11 mm that can fit in the catheter size of 9 F (<3 mm). The proposed system reduces the number of wires from >64 to only 22 by integrating Tx beamformer that is programmable using a single low-voltage differential signaling data line. In Rx mode, the system uses 8:1 TDM with direct digital demultiplexing providing raw channel data that enables dynamic Rx beamforming using individual array elements. This system has been successfully used for B-mode imaging on standard ultrasound phantom with 401 mW of average power consumption. The ASIC has a compact element pitch-matched layout, which is also compatible with capacitive micromachined ultrasound transducer on CMOS application. This system addresses cable number and dimensional restrictions in catheters to enable ICE imaging under magnetic resonance imaging by reducing radio frequency induced heating.

摘要

本文提出了一种单芯片简化线主动导管专用集成电路 (ASIC),配备可编程发射 (Tx) 波束成形和接收 (Rx) 时分复用 (TDM)。所提出的前端 ASIC 专为驱动心内超声心动图 (ICE) 超声导管中的 64 通道一维换能器阵列而设计。该 ASIC 采用 60 V 0.18-μm HV-BCD 技术实现,在同一芯片中集成 Tx 波束形成器和高压脉冲器以及 Rx 前端,占用 2.6×11mm 的空间,可适应 9 F(<3mm) 的导管尺寸。该系统通过集成可编程 Tx 波束形成器,将电线数量从>64 根减少到仅 22 根,该 Tx 波束形成器使用单根低压差分信号数据线进行编程。在 Rx 模式下,该系统使用 8:1 TDM 与直接数字解复用相结合,提供原始通道数据,可使用单个阵列元件进行动态 Rx 波束形成。该系统已成功用于标准超声体模的 B 模式成像,平均功耗为 401mW。该 ASIC 具有紧凑的元件间距匹配布局,也与 CMOS 应用中的电容式微机械超声换能器兼容。该系统解决了导管中电缆数量和尺寸的限制问题,通过减少射频感应加热,实现了磁共振成像下的 ICE 成像。

相似文献

6
Highly Integrated Guidewire Ultrasound Imaging System-on-a-Chip.高度集成的导丝超声成像片上系统
IEEE J Solid-State Circuits. 2020 May;55(5):1310-1323. doi: 10.1109/jssc.2020.2967551. Epub 2020 Jan 30.

引用本文的文献

1
High-Frequency, 2-mm-Diameter Forward-Viewing 2-D Array for 3-D Intracoronary Blood Flow Imaging.高频、2 毫米直径前向视野 2D 阵列用于三维冠状动脉血流成像。
IEEE Trans Ultrason Ferroelectr Freq Control. 2024 Aug;71(8):1051-1061. doi: 10.1109/TUFFC.2024.3418708. Epub 2024 Aug 19.
3
Design of Preamplifier for Ultrasound Transducers.超声换能器前置放大器的设计
Sensors (Basel). 2024 Jan 25;24(3):786. doi: 10.3390/s24030786.
6
Circuits on miniaturized ultrasound imaging system-on-a-chip: a review.小型化超声芯片成像系统中的电路:综述
Biomed Eng Lett. 2022 May 12;12(3):219-228. doi: 10.1007/s13534-022-00228-w. eCollection 2022 Aug.
8
Analysis of Negative Capacitance-Based Broadband Impedance Matching for CMUTs.基于负电容的 CMUT 宽带阻抗匹配分析。
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Sep;68(9):3042-3052. doi: 10.1109/TUFFC.2021.3079720. Epub 2021 Aug 27.

本文引用的文献

2
Supply-Doubled Pulse-Shaping High Voltage Pulser for CMUT Arrays.用于电容式微机械超声换能器(CMUT)阵列的双电源脉冲整形高压脉冲发生器
IEEE Trans Circuits Syst II Express Briefs. 2018 Mar;65(3):306-310. doi: 10.1109/TCSII.2017.2691676. Epub 2017 Apr 6.
4
Diverging Wave Volumetric Imaging Using Subaperture Beamforming.使用子孔径波束形成的发散波容积成像
IEEE Trans Ultrason Ferroelectr Freq Control. 2016 Dec;63(12):2114-2124. doi: 10.1109/TUFFC.2016.2616172. Epub 2016 Oct 10.
7
Integrated circuits for volumetric ultrasound imaging with 2-D CMUT arrays.二维 CMUT 阵列体超声成像的集成电路。
IEEE Trans Biomed Circuits Syst. 2013 Dec;7(6):796-804. doi: 10.1109/TBCAS.2014.2298197.
8
Width-modulated square-wave pulses for ultrasound applications.用于超声应用的调宽方波脉冲。
IEEE Trans Ultrason Ferroelectr Freq Control. 2013 Nov;60(11):2244-56. doi: 10.1109/TUFFC.2013.6644730.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验