Suppr超能文献

CYCLOPS 揭示了人类在健康和疾病状态下的转录节律。

CYCLOPS reveals human transcriptional rhythms in health and disease.

机构信息

Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104;

Center for Sleep and Circadian Neurobiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104.

出版信息

Proc Natl Acad Sci U S A. 2017 May 16;114(20):5312-5317. doi: 10.1073/pnas.1619320114. Epub 2017 Apr 24.

Abstract

Circadian rhythms modulate many aspects of physiology. Knowledge of the molecular basis of these rhythms has exploded in the last 20 years. However, most of these data are from model organisms, and translation to clinical practice has been limited. Here, we present an approach to identify molecular rhythms in humans from thousands of unordered expression measurements. Our algorithm, cyclic ordering by periodic structure (CYCLOPS), uses evolutionary conservation and machine learning to identify elliptical structure in high-dimensional data. From this structure, CYCLOPS estimates the phase of each sample. We validated CYCLOPS using temporally ordered mouse and human data and demonstrated its consistency on human data from two independent research sites. We used this approach to identify rhythmic transcripts in human liver and lung, including hundreds of drug targets and disease genes. Importantly, for many genes, the circadian variation in expression exceeded variation from genetic and other environmental factors. We also analyzed hepatocellular carcinoma samples and show these solid tumors maintain circadian function but with aberrant output. Finally, to show how this method can catalyze medical translation, we show that dosage time can temporally segregate efficacy from dose-limiting toxicity of streptozocin, a chemotherapeutic drug. In sum, these data show the power of CYCLOPS and temporal reconstruction in bridging basic circadian research and clinical medicine.

摘要

昼夜节律调节着生理的许多方面。在过去的 20 年中,这些节律的分子基础的知识已经爆炸式增长。然而,这些数据大多来自于模式生物,向临床实践的转化受到限制。在这里,我们提出了一种从数千个无序的表达测量中识别人类分子节律的方法。我们的算法,周期性结构的循环排序(CYCLOPS),利用进化保守性和机器学习在高维数据中识别椭圆结构。从这个结构中,CYCLOPS 估计每个样本的相位。我们使用时间顺序的小鼠和人类数据验证了 CYCLOPS,并在来自两个独立研究点的人类数据上证明了其一致性。我们使用这种方法在人类肝脏和肺部中识别出有节律的转录本,包括数百种药物靶点和疾病基因。重要的是,对于许多基因,表达的昼夜变化超过了遗传和其他环境因素的变化。我们还分析了肝细胞癌样本,表明这些实体瘤保持着昼夜节律功能,但输出异常。最后,为了展示这种方法如何促进医学转化,我们表明,剂量时间可以将链脲佐菌素(一种化疗药物)的疗效与剂量限制毒性区分开来。总之,这些数据显示了 CYCLOPS 和时间重建在连接基础昼夜节律研究和临床医学方面的强大功能。

相似文献

1
CYCLOPS reveals human transcriptional rhythms in health and disease.CYCLOPS 揭示了人类在健康和疾病状态下的转录节律。
Proc Natl Acad Sci U S A. 2017 May 16;114(20):5312-5317. doi: 10.1073/pnas.1619320114. Epub 2017 Apr 24.
4
Transcriptional regulatory logic of the diurnal cycle in the mouse liver.小鼠肝脏昼夜节律的转录调控逻辑。
PLoS Biol. 2017 Apr 17;15(4):e2001069. doi: 10.1371/journal.pbio.2001069. eCollection 2017 Apr.
6
Population-level rhythms in human skin with implications for circadian medicine.人类皮肤的群体节律及其对昼夜节律医学的影响。
Proc Natl Acad Sci U S A. 2018 Nov 27;115(48):12313-12318. doi: 10.1073/pnas.1809442115. Epub 2018 Oct 30.

引用本文的文献

1
Generating correlated data for omics simulation.生成用于组学模拟的相关数据。
PLoS Comput Biol. 2025 Sep 5;21(9):e1013392. doi: 10.1371/journal.pcbi.1013392. eCollection 2025 Sep.

本文引用的文献

7
Circadian rhythms in liver metabolism and disease.肝脏代谢与疾病中的昼夜节律。
Acta Pharm Sin B. 2015 Mar;5(2):113-22. doi: 10.1016/j.apsb.2015.01.003. Epub 2015 Feb 2.
8
Streptozotocin-Induced Diabetic Models in Mice and Rats.链脲佐菌素诱导的小鼠和大鼠糖尿病模型。
Curr Protoc Pharmacol. 2015 Sep 1;70:5.47.1-5.47.20. doi: 10.1002/0471141755.ph0547s70.
10
DSigDB: drug signatures database for gene set analysis.DSigDB:用于基因集分析的药物特征数据库。
Bioinformatics. 2015 Sep 15;31(18):3069-71. doi: 10.1093/bioinformatics/btv313. Epub 2015 May 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验