Suppr超能文献

一个新的前沿领域:纳米技术、脑机接口与人工智能的融合

A New Frontier: The Convergence of Nanotechnology, Brain Machine Interfaces, and Artificial Intelligence.

作者信息

Silva Gabriel A

机构信息

Departments of Bioengineering and Neurosciences, Center for Engineered Natural Intelligence, University of California San Diego, La Jolla, CA, United States.

出版信息

Front Neurosci. 2018 Nov 16;12:843. doi: 10.3389/fnins.2018.00843. eCollection 2018.

Abstract

A confluence of technological capabilities is creating an opportunity for machine learning and artificial intelligence (AI) to enable "smart" nanoengineered brain machine interfaces (BMI). This new generation of technologies will be able to communicate with the brain in ways that support contextual learning and adaptation to changing functional requirements. This applies to both invasive technologies aimed at restoring neurological function, as in the case of neural prosthesis, as well as non-invasive technologies enabled by signals such as electroencephalograph (EEG). Advances in computation, hardware, and algorithms that learn and adapt in a contextually dependent way will be able to leverage the capabilities that nanoengineering offers the design and functionality of BMI. We explore the enabling capabilities that these devices may exhibit, why they matter, and the state of the technologies necessary to build them. We also discuss a number of open technical challenges and problems that will need to be solved in order to achieve this.

摘要

多种技术能力的融合为机器学习和人工智能创造了机会,使其能够实现“智能”纳米工程脑机接口(BMI)。新一代技术将能够以支持情境学习和适应不断变化的功能需求的方式与大脑进行通信。这既适用于旨在恢复神经功能的侵入性技术,如神经假体的情况,也适用于由脑电图(EEG)等信号实现的非侵入性技术。以情境依赖方式进行学习和适应的计算、硬件和算法方面的进步,将能够利用纳米工程为脑机接口的设计和功能所提供的能力。我们探讨了这些设备可能展现的赋能能力、它们为何重要以及构建这些设备所需技术的现状。我们还讨论了为实现这一目标需要解决的一些开放性技术挑战和问题。

相似文献

1
A New Frontier: The Convergence of Nanotechnology, Brain Machine Interfaces, and Artificial Intelligence.
Front Neurosci. 2018 Nov 16;12:843. doi: 10.3389/fnins.2018.00843. eCollection 2018.
4
Neural interface systems with on-device computing: machine learning and neuromorphic architectures.
Curr Opin Biotechnol. 2021 Dec;72:95-101. doi: 10.1016/j.copbio.2021.10.012. Epub 2021 Nov 1.
5
Restoring upper extremity function with brain-machine interfaces.
Int Rev Neurobiol. 2021;159:153-186. doi: 10.1016/bs.irn.2021.06.001. Epub 2021 Jul 24.
6
Artificial Intelligence-Powered Electronic Skin.
Nat Mach Intell. 2023 Dec;5(12):1344-1355. doi: 10.1038/s42256-023-00760-z. Epub 2023 Dec 18.
7
Implementation of artificial intelligence and machine learning-based methods in brain-computer interaction.
Comput Biol Med. 2023 Sep;163:107135. doi: 10.1016/j.compbiomed.2023.107135. Epub 2023 Jun 8.
8
Toward an AI Era: Advances in Electronic Skins.
Chem Rev. 2024 Sep 11;124(17):9899-9948. doi: 10.1021/acs.chemrev.4c00049. Epub 2024 Aug 28.
9
Neural co-processors for restoring brain function: results from a cortical model of grasping.
J Neural Eng. 2023 May 9;20(3). doi: 10.1088/1741-2552/accaa9.
10
[The research status and development trends of brain-computer interfaces in medicine].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2023 Jun 25;40(3):566-572. doi: 10.7507/1001-5515.202303038.

引用本文的文献

2
Study on the Effect of the Envelope of Terahertz Unipolar Stimulation on Cell Membrane Communication-Related Variables.
Research (Wash D C). 2025 Jul 15;8:0755. doi: 10.34133/research.0755. eCollection 2025.
3
Wearable Technology and Its Influence on Motor Development and Biomechanical Analysis.
Int J Environ Res Public Health. 2024 Aug 26;21(9):1126. doi: 10.3390/ijerph21091126.
4
Brain-computer interfaces: the innovative key to unlocking neurological conditions.
Int J Surg. 2024 Sep 1;110(9):5745-5762. doi: 10.1097/JS9.0000000000002022.
5
Review on brain-computer interface technologies in healthcare.
Biophys Rev. 2023 Sep 14;15(5):1351-1358. doi: 10.1007/s12551-023-01138-6. eCollection 2023 Oct.
7
Nanotechnology: A Revolution in Modern Industry.
Molecules. 2023 Jan 9;28(2):661. doi: 10.3390/molecules28020661.
8
Emerging Materials, Wearables, and Diagnostic Advancements in Therapeutic Treatment of Brain Diseases.
Biosensors (Basel). 2022 Dec 16;12(12):1176. doi: 10.3390/bios12121176.
9
Mycology-Nanotechnology Interface: Applications in Medicine and Cosmetology.
Int J Nanomedicine. 2022 Jun 2;17:2505-2533. doi: 10.2147/IJN.S363282. eCollection 2022.
10

本文引用的文献

1
Nano-biotechnology: carbon nanofibres as improved neural and orthopaedic implants.
Nanotechnology. 2004 Jan 1;15(1). doi: 10.1088/0957-4484/15/1/009.
2
Progress in Neuroengineering for brain repair: New challenges and open issues.
Brain Neurosci Adv. 2018 May 21;2:2398212818776475. doi: 10.1177/2398212818776475. eCollection 2018 Jan-Dec.
3
Nanotechnology in Neuroscience Reveals Membrane Mobility Matters.
ACS Chem Neurosci. 2019 Jan 16;10(1):30-32. doi: 10.1021/acschemneuro.8b00495. Epub 2018 Oct 4.
4
All-optical machine learning using diffractive deep neural networks.
Science. 2018 Sep 7;361(6406):1004-1008. doi: 10.1126/science.aat8084. Epub 2018 Jul 26.
5
EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces.
J Neural Eng. 2018 Oct;15(5):056013. doi: 10.1088/1741-2552/aace8c. Epub 2018 Jun 22.
6
Closing the Loop on Deep Brain Stimulation for Treatment-Resistant Depression.
Front Neurosci. 2018 Mar 21;12:175. doi: 10.3389/fnins.2018.00175. eCollection 2018.
7
Brain-Computer Interface Spellers: A Review.
Brain Sci. 2018 Mar 30;8(4):57. doi: 10.3390/brainsci8040057.
8
Nanomaterials at the neural interface.
Curr Opin Neurobiol. 2018 Jun;50:50-55. doi: 10.1016/j.conb.2017.12.009. Epub 2017 Dec 28.
9
Four ethical priorities for neurotechnologies and AI.
Nature. 2017 Nov 8;551(7679):159-163. doi: 10.1038/551159a.
10
Deep learning for single-molecule science.
Nanotechnology. 2017 Oct 20;28(42):423001. doi: 10.1088/1361-6528/aa8334. Epub 2017 Aug 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验