Suppr超能文献

复杂伪X光图像中异常区域的统计学习在检测和辨别之间无法迁移。

Statistical learning of anomalous regions in complex faux X-ray images does not transfer between detection and discrimination.

作者信息

Sha Li Z, Remington Roger W, Jiang Yuhong V

机构信息

Department of Psychology, University of Minnesota, 75 East River Road, S506 Elliott Hall, Minneapolis, MN, 55455, USA.

Center for Cognitive Sciences, University of Minnesota, Minneapolis, MN, USA.

出版信息

Cogn Res Princ Implic. 2018 Dec 13;3(1):48. doi: 10.1186/s41235-018-0144-1.

Abstract

The visual environment contains predictable information - "statistical regularities" - that can be used to aid perception and attentional allocation. Here we investigate the role of statistical learning in facilitating search tasks that resemble medical-image perception. Using faux X-ray images, we employed two tasks that mimicked two problems in medical-image perception: detecting a target signal that is poorly segmented from the background; and discriminating a candidate anomaly from benign signals. In the first, participants searched a heavily camouflaged target embedded in cloud-like noise. In the second, the noise opacity was reduced, but the target appeared among visually similar distractors. We tested the hypothesis that learning may be task-specific. To this end, we introduced statistical regularities by presenting the target disproportionately more frequently in one region of the space. This manipulation successfully induced incidental learning of the target's location probability, producing faster search when the target appeared in the high-probability region. The learned attentional preference persisted through a testing phase in which the target's location was random. Supporting the task-specificity hypothesis, when the task changed between training and testing, the learned priority did not transfer. Eye tracking showed fewer, but longer, fixations in the detection than in the discrimination task. The observation of task-specificity of statistical learning has implications for theories of spatial attention and sheds light on the design of effective training tasks.

摘要

视觉环境包含可预测的信息——“统计规律”,可用于辅助感知和注意力分配。在此,我们研究统计学习在促进类似于医学图像感知的搜索任务中的作用。使用伪造的X光图像,我们采用了两项任务,它们模仿了医学图像感知中的两个问题:检测与背景分割不佳的目标信号;以及从良性信号中辨别候选异常。在第一项任务中,参与者在类似云朵的噪声中搜索一个高度伪装的目标。在第二项任务中,噪声不透明度降低,但目标出现在视觉上相似的干扰物之中。我们测试了学习可能具有任务特异性的假设。为此,我们通过在空间的一个区域中不成比例地更频繁呈现目标来引入统计规律。这种操作成功地诱导了对目标位置概率的偶然学习,当目标出现在高概率区域时,搜索速度更快。在目标位置随机的测试阶段,习得的注意力偏好仍然存在。支持任务特异性假设的是,当训练和测试之间的任务发生变化时,习得的优先级不会转移。眼动追踪显示,与辨别任务相比,检测任务中的注视次数更少,但持续时间更长。统计学习任务特异性的观察结果对空间注意力理论具有启示意义,并为有效训练任务的设计提供了思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf6f/6292828/f55b85ab04de/41235_2018_144_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验