Department of Computer Science, Johns Hopkins University, Baltimore, USA.
Center for Computational Biology, Johns Hopkins University, Baltimore, USA.
Genome Biol. 2018 Dec 17;19(1):220. doi: 10.1186/s13059-018-1595-x.
There is growing interest in using genetic variants to augment the reference genome into a graph genome, with alternative sequences, to improve read alignment accuracy and reduce allelic bias. While adding a variant has the positive effect of removing an undesirable alignment score penalty, it also increases both the ambiguity of the reference genome and the cost of storing and querying the genome index. We introduce methods and a software tool called FORGe for modeling these effects and prioritizing variants accordingly. We show that FORGe enables a range of advantageous and measurable trade-offs between accuracy and computational overhead.
人们越来越感兴趣的是使用遗传变异来扩充参考基因组为图基因组,包括替代序列,以提高读段比对的准确性并减少等位基因偏倚。虽然添加变异具有积极作用,可以消除不理想的比对得分惩罚,但它也增加了参考基因组的模糊性,并增加了存储和查询基因组索引的成本。我们介绍了方法和一个名为 FORGe 的软件工具,用于模拟这些效果,并相应地对变体进行优先级排序。我们表明,FORGe 可以在准确性和计算开销之间进行一系列有利且可衡量的权衡。