Suppr超能文献

多离散频率光声显微镜

Optoacoustic microscopy at multiple discrete frequencies.

作者信息

Kellnberger Stephan, Soliman Dominik, Tserevelakis George J, Seeger Markus, Yang Hong, Karlas Angelos, Prade Ludwig, Omar Murad, Ntziachristos Vasilis

机构信息

1Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.

2Chair of Biological Imaging (CBI) and Center for Translational Cancer Research (TranslaTUM), Technical University Munich, Einsteinstraße 25, 81675 München, Germany.

出版信息

Light Sci Appl. 2018 Dec 19;7:109. doi: 10.1038/s41377-018-0101-2. eCollection 2018.

Abstract

Optoacoustic (photoacoustic) sensing employs illumination of transient energy and is typically implemented in the time domain using nanosecond photon pulses. However, the generation of high-energy short photon pulses requires complex laser technology that imposes a low pulse repetition frequency (PRF) and limits the number of wavelengths that are concurrently available for spectral imaging. To avoid the limitations of working in the time domain, we have developed frequency-domain optoacoustic microscopy (FDOM), in which light intensity is modulated at multiple discrete frequencies. We integrated FDOM into a hybrid system with multiphoton microscopy, and we examine the relationship between image formation and modulation frequency, showcase high-fidelity images with increasing numbers of modulation frequencies from phantoms and in vivo, and identify a redundancy in optoacoustic measurements performed at multiple frequencies. We demonstrate that due to high repetition rates, FDOM achieves signal-to-noise ratios similar to those obtained by time-domain methods, using commonly available laser diodes. Moreover, we experimentally confirm various advantages of the frequency-domain implementation at discrete modulation frequencies, including concurrent illumination at two wavelengths that are carried out at different modulation frequencies as well as flow measurements in microfluidic chips and in vivo based on the optoacoustic Doppler effect. Furthermore, we discuss how FDOM redefines possibilities for optoacoustic imaging by capitalizing on the advantages of working in the frequency domain.

摘要

光声传感利用瞬态能量照明,通常在时域中使用纳秒级光子脉冲来实现。然而,产生高能量短光子脉冲需要复杂的激光技术,这会导致低脉冲重复频率(PRF),并限制了可同时用于光谱成像的波长数量。为了避免在时域工作的局限性,我们开发了频域光声显微镜(FDOM),其中光强度在多个离散频率上进行调制。我们将FDOM集成到一个与多光子显微镜相结合的混合系统中,研究了图像形成与调制频率之间的关系,展示了随着调制频率数量增加,来自体模和体内的高保真图像,并确定了在多个频率下进行的光声测量中的冗余。我们证明,由于高重复率,FDOM使用常见可用的激光二极管实现了与时域方法相似的信噪比。此外,我们通过实验证实了在离散调制频率下频域实现方式的各种优势,包括在不同调制频率下同时进行两个波长的照明,以及基于光声多普勒效应在微流控芯片和体内进行的流量测量。此外,我们讨论了FDOM如何通过利用在频域工作的优势重新定义光声成像的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55ea/6298999/2a7e1e71ffd2/41377_2018_101_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验