Suppr超能文献

牛磺酸可改善链脲佐菌素诱导的胰岛素缺乏型糖尿病小鼠的葡萄糖耐量。

Taurine improves glucose tolerance in STZ-induced insulin-deficient diabetic mice.

作者信息

Nakatsuru Yuko, Murase-Mishiba Yuko, Bessho-Tachibana Megumi, Terasaki Jungo, Hanafusa Toshiaki, Imagawa Akihisa

机构信息

Department of Internal Medicine (I), Osaka Medical College, 2-7 Daigaku-cho, Takatsuki, Osaka 569-8686 Japan.

出版信息

Diabetol Int. 2018 Mar 19;9(4):234-242. doi: 10.1007/s13340-018-0353-3. eCollection 2018 Oct.

Abstract

Blood glucose levels fluctuate considerably in diabetic patients with reduced secretion of endogenous insulin. We previously reported that glucagon is secreted excessively in these patients and that taurine increases glucagon secretion in vitro. Therefore, we hypothesized that glucose tolerance would further deteriorate when taurine was administered to diabetic mice incapable of insulin secretion. We generated four groups of streptozotocin (STZ)-treated C57BL/6J mice (STZ-mice): STZ-mice without taurine treatment (STZ-Con), STZ-mice treated with 0.5% (w/v) taurine (STZ-0.5% Tau), STZ-mice treated with 1% (w/v) taurine (STZ-1% Tau), and STZ-mice treated with 2% (w/v) taurine (STZ-2% Tau). Mice were treated for 4 weeks, and then, we evaluated glucose tolerance, pancreatic β-cell area and α-cell area, pancreatic insulin and glucagon content, and daily blood glucose variability. As a result, following the administration of taurine, glucose tolerance improved, both pancreatic β- and α-cell area increased, and both insulin and glucagon content increased. In the 1% taurine administration group, blood glucose variability decreased. These unexpected results suggest that taurine improves glucose tolerance, in spite of its subsequent increased glucagon production, partly by increasing pancreatic β-cells and insulin production in vivo.

摘要

内源性胰岛素分泌减少的糖尿病患者血糖水平波动很大。我们之前报道过,这些患者胰高血糖素分泌过多,并且牛磺酸在体外可增加胰高血糖素分泌。因此,我们推测,给无法分泌胰岛素的糖尿病小鼠施用牛磺酸后,其糖耐量会进一步恶化。我们将四组经链脲佐菌素(STZ)处理的C57BL/6J小鼠(STZ小鼠):未用牛磺酸处理的STZ小鼠(STZ-Con)、用0.5%(w/v)牛磺酸处理的STZ小鼠(STZ-0.5% Tau)、用1%(w/v)牛磺酸处理的STZ小鼠(STZ-1% Tau)和用2%(w/v)牛磺酸处理的STZ小鼠(STZ-2% Tau)。小鼠接受4周治疗,然后,我们评估了糖耐量、胰腺β细胞面积和α细胞面积、胰腺胰岛素和胰高血糖素含量以及每日血糖变异性。结果,施用牛磺酸后,糖耐量改善,胰腺β细胞和α细胞面积均增加,胰岛素和胰高血糖素含量均增加。在1%牛磺酸施用组中,血糖变异性降低。这些意外结果表明,牛磺酸可改善糖耐量,尽管其随后会增加胰高血糖素的产生,部分原因是在体内增加了胰腺β细胞和胰岛素的产生。

相似文献

1
Taurine improves glucose tolerance in STZ-induced insulin-deficient diabetic mice.
Diabetol Int. 2018 Mar 19;9(4):234-242. doi: 10.1007/s13340-018-0353-3. eCollection 2018 Oct.
2
Taurine supplementation enhances nutrient-induced insulin secretion in pancreatic mice islets.
Diabetes Metab Res Rev. 2009 May;25(4):370-9. doi: 10.1002/dmrr.959.
7
A novel dipeptidyl peptidase IV inhibitor DA-1229 ameliorates streptozotocin-induced diabetes by increasing β-cell replication and neogenesis.
Diabetes Res Clin Pract. 2011 Jan;91(1):72-9. doi: 10.1016/j.diabres.2010.10.012. Epub 2010 Nov 18.
10
Streptozotocin-induced elevation of pancreatic taurine content and suppressive effect of taurine on insulin secretion.
Eur J Pharmacol. 1983 Feb 18;87(2-3):237-43. doi: 10.1016/0014-2999(83)90333-3.

引用本文的文献

1
Genetics of type-1 diabetes.
Diabetol Int. 2024 Sep 2;15(4):688-698. doi: 10.1007/s13340-024-00754-1. eCollection 2024 Oct.
2
A narrative review and new insights into the protective effects of taurine against drug side effects.
Naunyn Schmiedebergs Arch Pharmacol. 2025 Jan;398(1):203-230. doi: 10.1007/s00210-024-03331-0. Epub 2024 Aug 14.
3
Potential anti-hyperglycemic activity of black tea theaflavins through inhibiting α-amylase.
Food Chem X. 2024 Mar 16;22:101296. doi: 10.1016/j.fochx.2024.101296. eCollection 2024 Jun 30.
5
Amino Acid Nanofibers Improve Glycemia and Confer Cognitive Therapeutic Efficacy to Bound Insulin.
Pharmaceutics. 2021 Dec 29;14(1):81. doi: 10.3390/pharmaceutics14010081.
6
β-Cell failure in diabetes: Common susceptibility and mechanisms shared between type 1 and type 2 diabetes.
J Diabetes Investig. 2021 Sep;12(9):1526-1539. doi: 10.1111/jdi.13576. Epub 2021 Jun 16.
7
Important roles of dietary taurine, creatine, carnosine, anserine and 4-hydroxyproline in human nutrition and health.
Amino Acids. 2020 Mar;52(3):329-360. doi: 10.1007/s00726-020-02823-6. Epub 2020 Feb 18.

本文引用的文献

1
2. Classification and Diagnosis of Diabetes.
Diabetes Care. 2017 Jan;40(Suppl 1):S11-S24. doi: 10.2337/dc17-S005.
5
Glycaemic instability correlates with a hyperglucagonaemic response in patients with type 1 diabetes without residual beta-cell function.
Diabetes Res Clin Pract. 2013 Nov;102(2):e38-40. doi: 10.1016/j.diabres.2013.09.003. Epub 2013 Sep 16.
6
Pancreatic β cell dedifferentiation as a mechanism of diabetic β cell failure.
Cell. 2012 Sep 14;150(6):1223-34. doi: 10.1016/j.cell.2012.07.029.
7
Taurine and inflammatory diseases.
Amino Acids. 2014 Jan;46(1):7-20. doi: 10.1007/s00726-012-1361-4. Epub 2012 Jul 19.
8
Taurine stimulates proliferation and promotes neurogenesis of mouse adult cultured neural stem/progenitor cells.
Stem Cell Res. 2012 Jul;9(1):24-34. doi: 10.1016/j.scr.2012.02.004. Epub 2012 Mar 7.
9
Mechanism underlying the antioxidant activity of taurine: prevention of mitochondrial oxidant production.
Amino Acids. 2012 Jun;42(6):2223-32. doi: 10.1007/s00726-011-0962-7. Epub 2011 Jun 21.
10
Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss.
Nature. 2010 Apr 22;464(7292):1149-54. doi: 10.1038/nature08894. Epub 2010 Apr 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验