Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.
Department of Physiology, University of Toronto, Toronto, Ontario, Canada.
PLoS One. 2019 Jan 8;14(1):e0209429. doi: 10.1371/journal.pone.0209429. eCollection 2019.
Brain coding strategies are enabled by the balance of synaptic inputs that individual neurons receive as determined by the networks in which they reside. Inhibitory cell types contribute to brain function in distinct ways but recording from specific, inhibitory cell types during behaviour to determine their contributions is highly challenging. In particular, the in vivo activities of vasoactive intestinal peptide-expressing interneuron specific 3 (IS3) cells in the hippocampus that only target other inhibitory cells are unknown at present. We perform a massive, computational exploration of possible synaptic inputs to IS3 cells using multi-compartment models and optimized synaptic parameters. We find that asynchronous, in vivo-like states that are sensitive to additional theta-timed inputs (8 Hz) exist when excitatory and inhibitory synaptic conductances are approximately equally balanced and with low numbers of activated synapses receiving correlated inputs. Specifically, under these balanced conditions, the input resistance is larger with higher mean spike firing rates relative to other activated synaptic conditions investigated. Incoming theta-timed inputs result in strongly increased spectral power relative to baseline. Thus, using a generally applicable computational approach we predict the existence and features of background, balanced states in hippocampal circuits.
大脑编码策略是由单个神经元接收到的突触输入的平衡所决定的,而这些输入是由它们所在的网络决定的。抑制性细胞类型以不同的方式对大脑功能做出贡献,但在行为过程中记录特定的、抑制性细胞类型以确定它们的贡献是极具挑战性的。特别是,目前尚不清楚在海马体中,仅针对其他抑制性细胞的血管活性肠肽表达中间神经元特异性 3 (IS3) 细胞的体内活性。我们使用多腔室模型和优化的突触参数,对 IS3 细胞可能的突触输入进行了大规模的计算探索。我们发现,当兴奋性和抑制性突触电导大致平衡且激活的突触数量较少时,存在对额外的θ定时输入(8 Hz)敏感的异步、类似于体内的状态。具体来说,在这些平衡条件下,与其他被激活的突触条件相比,输入电阻随着平均尖峰发射率的增加而增大。传入的θ定时输入导致相对于基线的频谱功率显著增加。因此,我们使用一种普遍适用的计算方法来预测海马体回路中背景、平衡状态的存在和特征。