Department of Medical Microbiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands.
Center of Expertise in Mycology Radboudumc/CWZ, Weg door Jonkerbos 100, 6532 SZ, Nijmegen, the Netherlands.
BMC Genomics. 2019 Jan 9;20(1):28. doi: 10.1186/s12864-018-5255-z.
The prevalence of azole resistance in clinical and environmental Aspergillus fumigatus isolates is rising over the past decades, but the molecular basis of the development of antifungal drug resistance is not well understood. This study focuses on the role of phenotypic plasticity in the evolution of azole resistance in A. fumigatus. When A. fumigatus is challenged with a new stressful environment, phenotypic plasticity may allow A. fumigatus to adjust their physiology to still enable growth and reproduction, therefore allowing the establishment of genetic adaptations through natural selection on the available variation in the mutational and recombinational gene pool. To investigate these short-term physiological adaptations, we conducted time series transcriptome analyses on three clinical A. fumigatus isolates, during incubation with itraconazole.
After analysis of expression patterns, we identified 3955, 3430, 1207, and 1101 differentially expressed genes (DEGs), after 30, 60, 120 and 240 min of incubation with itraconazole, respectively. We explored the general functions in these gene groups and we identified 186 genes that were differentially expressed during the whole time series. Additionally, we investigated expression patterns of potential novel drug-efflux transporters, genes involved in ergosterol and phospholipid biosynthesis, and the known MAPK proteins of A. fumigatus.
Our data suggests that A. fumigatus adjusts its transcriptome quickly within 60 min of exposure to itraconazole. Further investigation of these short-term adaptive phenotypic plasticity mechanisms might enable us to understand how the direct response of A. fumigatus to itraconazole promotes survival of the fungus in the patient, before any "hard-wired" genetic mutations arise.
在过去几十年中,临床和环境烟曲霉分离株中唑类药物耐药的流行率不断上升,但对抗真菌药物耐药性发展的分子基础尚不完全清楚。本研究侧重于表型可塑性在烟曲霉唑类耐药进化中的作用。当烟曲霉受到新的应激环境挑战时,表型可塑性可能使烟曲霉调整其生理机能以维持生长和繁殖,从而通过自然选择在可利用的突变和重组基因库中的变异基础上建立遗传适应性。为了研究这些短期生理适应性,我们对三个临床烟曲霉分离株进行了时间序列转录组分析,在孵育过程中加入伊曲康唑。
分析表达模式后,我们分别鉴定出 3955、3430、1207 和 1101 个差异表达基因(DEGs),在与伊曲康唑孵育 30、60、120 和 240 分钟后。我们探索了这些基因组中的一般功能,并鉴定出 186 个在整个时间序列中差异表达的基因。此外,我们还研究了潜在新型药物外排转运蛋白、参与麦角固醇和磷脂生物合成的基因以及烟曲霉已知的 MAPK 蛋白的表达模式。
我们的数据表明,烟曲霉在暴露于伊曲康唑 60 分钟内快速调整其转录组。进一步研究这些短期适应性表型可塑性机制可能使我们了解烟曲霉对伊曲康唑的直接反应如何促进真菌在患者中的生存,而无需出现任何“硬连线”遗传突变。