Suppr超能文献

小鼠初级视觉皮层中的层特异性生理特征和层间相互作用。

Layer-Specific Physiological Features and Interlaminar Interactions in the Primary Visual Cortex of the Mouse.

机构信息

Neuroscience Institute, New York University, Langone Medical Center, New York, NY 10016, USA.

Neuroscience Institute, New York University, Langone Medical Center, New York, NY 10016, USA; Department of Neurology, Langone Medical Center, New York University, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA.

出版信息

Neuron. 2019 Feb 6;101(3):500-513.e5. doi: 10.1016/j.neuron.2018.12.009. Epub 2019 Jan 8.

Abstract

The relationship between mesoscopic local field potentials (LFPs) and single-neuron firing in the multi-layered neocortex is poorly understood. Simultaneous recordings from all layers in the primary visual cortex (V1) of the behaving mouse revealed functionally defined layers in V1. The depth of maximum spike power and sink-source distributions of LFPs provided consistent laminar landmarks across animals. Coherence of gamma oscillations (30-100 Hz) and spike-LFP coupling identified six physiological layers and further sublayers. Firing rates, burstiness, and other electrophysiological features of neurons displayed unique layer and brain state dependence. Spike transmission strength from layer 2/3 cells to layer 5 pyramidal cells and interneurons was stronger during waking compared with non-REM sleep but stronger during non-REM sleep among deep-layer excitatory neurons. A subset of deep-layer neurons was active exclusively in the DOWN state of non-REM sleep. These results bridge mesoscopic LFPs and single-neuron interactions with laminar structure in V1.

摘要

在多层新皮层中,介观局部场电位 (LFP) 与单个神经元放电之间的关系尚未得到很好的理解。对行为小鼠初级视觉皮层 (V1) 所有层的同时记录揭示了 V1 中功能定义的层。LFP 的最大尖峰功率深度和源汇分布为跨动物提供了一致的层状地标。伽马振荡 (30-100 Hz) 的相干性和尖峰-LFP 耦合确定了六个生理层,进一步分为亚层。神经元的放电率、爆发性和其他电生理特征表现出独特的层和脑状态依赖性。与非快速眼动睡眠相比,清醒时从第 2/3 层细胞到第 5 层锥体神经元和中间神经元的尖峰传输强度更强,但在非快速眼动睡眠期间深层兴奋性神经元中的强度更强。深层层中神经元的子集仅在非快速眼动睡眠的 DOWN 状态下活跃。这些结果将介观 LFPs 和单个神经元与 V1 中的层状结构相互作用联系起来。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93a9/6486657/9c284731a283/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验