Millet Marie-Mathilde, Algara-Siller Gerardo, Wrabetz Sabine, Mazheika Aliaksei, Girgsdies Frank, Teschner Detre, Seitz Friedrich, Tarasov Andrey, Levchenko Sergey V, Schlögl Robert, Frei Elias
Department of Inorganic Chemistry , Fritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6 , 14195 Berlin , Germany.
Department of Theory , Fritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6 , 14195 Berlin , Germany.
J Am Chem Soc. 2019 Feb 13;141(6):2451-2461. doi: 10.1021/jacs.8b11729. Epub 2019 Jan 30.
We report on the activation of CO on Ni single-atom catalysts. These catalysts were synthesized using a solid solution approach by controlled substitution of 1-10 atom % of Mg by Ni inside the MgO structure. The Ni atoms are preferentially located on the surface of the MgO and, as predicted by hybrid-functional calculations, favor low-coordinated sites. The isolated Ni atoms are active for CO conversion through the reverse water-gas shift (rWGS) but are unable to conduct its further hydrogenation to CH (or MeOH), for which Ni clusters are needed. The CO formation rates correlate linearly with the concentration of Ni on the surface evidenced by XPS and microcalorimetry. The calculations show that the substitution of Mg atoms by Ni atoms on the surface of the oxide structure reduces the strength of the CO binding at low-coordinated sites and also promotes H dissociation. Astonishingly, the single-atom catalysts stayed stable over 100 h on stream, after which no clusters or particle formation could be detected. Upon catalysis, a surface carbonate adsorbate-layer was formed, of which the decompositions appear to be directly linked to the aggregation of Ni. This study on atomically dispersed Ni species brings new fundamental understanding of Ni active sites for reactions involving CO and clearly evidence the limits of single-atom catalysis for complex reactions.
我们报道了一氧化碳在镍单原子催化剂上的活化情况。这些催化剂采用固溶体方法合成,通过在氧化镁结构中用镍可控取代1 - 10原子百分比的镁。镍原子优先位于氧化镁表面,正如杂化泛函计算所预测的,倾向于低配位位点。孤立的镍原子通过逆水煤气变换(rWGS)对一氧化碳转化具有活性,但无法将其进一步氢化为甲烷(或甲醇),而这需要镍簇。一氧化碳生成速率与通过X射线光电子能谱(XPS)和微量热法所证实的表面镍浓度呈线性相关。计算表明,在氧化物结构表面用镍原子取代镁原子会降低低配位位点上一氧化碳的结合强度,同时也促进氢的解离。令人惊讶的是,单原子催化剂在连续运行100小时后仍保持稳定,之后未检测到簇或颗粒的形成。催化过程中,形成了一个表面碳酸盐吸附层,其分解似乎与镍的聚集直接相关。这项关于原子分散镍物种的研究为涉及一氧化碳的反应中镍活性位点带来了新的基础认识,并清楚地证明了单原子催化在复杂反应中的局限性。