Suppr超能文献

驾驶员行为的网络模型。

Network models of driver behavior.

作者信息

Mattsson Markus T

机构信息

Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland.

Traffic Research Unit, University of Helsinki, Helsinki, Finland.

出版信息

PeerJ. 2019 Jan 10;6:e6119. doi: 10.7717/peerj.6119. eCollection 2019.

Abstract

The way people behave in traffic is not always optimal from the road safety perspective: drivers exceed speed limits, misjudge speeds or distances, tailgate other road users or fail to perceive them. Such behaviors are commonly investigated using self-report-based latent variable models, and conceptualized as reflections of violation- and error-proneness. However, attributing dangerous behavior to stable properties of individuals may not be the optimal way of improving traffic safety, whereas investigating direct relationships between traffic behaviors offers a fruitful way forward. Network models of driver behavior and background factors influencing behavior were constructed using a large UK sample of novice drivers. The models show how individual violations, such as speeding, are related to and may contribute to individual errors such as tailgating and braking to avoid an accident. In addition, a network model of the background factors and driver behaviors was constructed. Finally, a model predicting crashes based on prior behavior was built and tested in separate datasets. This contribution helps to bridge a gap between experimental/theoretical studies and self-report-based studies in traffic research: the former have recognized the importance of focusing on relationships between individual driver behaviors, while network analysis offers a way to do so for self-report studies.

摘要

从道路安全的角度来看,人们在交通中的行为方式并不总是最优的:司机超速、误判速度或距离、尾随其他道路使用者或未能察觉到他们。此类行为通常使用基于自我报告的潜在变量模型进行研究,并被概念化为违规倾向和易出错性的反映。然而,将危险行为归因于个体的稳定特性可能并非改善交通安全的最佳方式,而研究交通行为之间的直接关系则提供了一条富有成效的前进道路。利用英国大量新手司机样本构建了驾驶员行为和影响行为的背景因素的网络模型。这些模型展示了诸如超速等个体违规行为如何与诸如尾随及为避免事故而刹车等个体错误相关联,并可能导致这些错误。此外,还构建了背景因素和驾驶员行为的网络模型。最后,基于先前行为构建了一个预测撞车事故的模型,并在单独的数据集中进行了测试。这一贡献有助于弥合交通研究中实验/理论研究与基于自我报告的研究之间的差距:前者已经认识到关注个体驾驶员行为之间关系的重要性,而网络分析为基于自我报告的研究提供了一种这样做的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a60e/6330205/120d2eb6686b/peerj-07-6119-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验