Department of Mechanical Engineering, 2147 Glenn L. Martin Hall, University of Maryland, College Park, MD, 20740, USA.
Fischell Department of Bioengineering, 2147 Glenn L. Martin Hall, University of Maryland, College Park, MD, 20740, USA.
Sci Rep. 2019 Jan 23;9(1):394. doi: 10.1038/s41598-018-36727-z.
Direct laser writing (DLW) is a three-dimensional (3D) manufacturing technology that offers significant geometric versatility at submicron length scales. Although these characteristics hold promise for fields including organ modeling and microfluidic processing, difficulties associated with facilitating the macro-to-micro interfaces required for fluid delivery have limited the utility of DLW for such applications. To overcome this issue, here we report an in-situ DLW (isDLW) strategy for creating 3D nanostructured features directly inside of-and notably, fully sealed to-sol-gel-coated elastomeric microchannels. In particular, we investigate the role of microchannel geometry (e.g., cross-sectional shape and size) in the sealing performance of isDLW-printed structures. Experiments revealed that increasing the outward tapering of microchannel sidewalls improved fluidic sealing integrity for channel heights ranging from 10 μm to 100 μm, which suggests that conventional microchannel fabrication approaches are poorly suited for isDLW. As a demonstrative example, we employed isDLW to 3D print a microfluidic helical coil spring diode and observed improved flow rectification performance at higher pressures-an indication of effective structure-to-channel sealing. We envision that the ability to readily integrate 3D nanostructured fluidic motifs with the entire luminal surface of elastomeric channels will open new avenues for emerging applications in areas such as soft microrobotics and biofluidic microsystems.
直接激光写入(DLW)是一种三维(3D)制造技术,可在亚微米长度尺度上提供显著的几何灵活性。尽管这些特性在器官建模和微流控处理等领域具有广阔的应用前景,但由于难以促进流体输送所需的宏观到微观接口,DLW 在这些应用中的实用性受到了限制。为了克服这个问题,我们在这里报告了一种原位 DLW(isDLW)策略,用于在溶胶-凝胶涂层弹性体微通道内部直接创建 3D 纳米结构特征,并且特别地,完全密封。具体而言,我们研究了微通道几何形状(例如,横截面形状和尺寸)对 isDLW 打印结构密封性能的影响。实验表明,增加微通道侧壁的向外渐缩度可以提高从 10μm 到 100μm 的通道高度的流体密封完整性,这表明传统的微通道制造方法不太适合 isDLW。作为一个示范示例,我们使用 isDLW 3D 打印了微流控螺旋线圈弹簧二极管,并在更高压力下观察到了改进的流动整流性能,这表明结构与通道的密封效果良好。我们设想,能够将 3D 纳米结构的流体图案与弹性体通道的整个内腔表面轻松集成,将为软微机器人和生物流体微系统等新兴应用领域开辟新的途径。