DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany.
Lab Chip. 2018 May 1;18(9):1341-1348. doi: 10.1039/c7lc01366c.
Microfluidics is an established multidisciplinary research domain with widespread applications in the fields of medicine, biotechnology and engineering. Conventional production methods of microfluidic chips have been limited to planar structures, preventing the exploitation of truly three-dimensional architectures for applications such as multi-phase droplet preparation or wet-phase fibre spinning. Here the challenge of nanofabrication inside a microfluidic chip is tackled for the showcase of a spider-inspired spinneret. Multiphoton lithography, an additive manufacturing method, was used to produce free-form microfluidic masters, subsequently replicated by soft lithography. Into the resulting microfluidic device, a three-dimensional spider-inspired spinneret was directly fabricated in-chip via multiphoton lithography. Applying this unprecedented fabrication strategy, the to date smallest printed spinneret nozzle is produced. This spinneret resides tightly sealed, connecting it to the macroscopic world. Its functionality is demonstrated by wet-spinning of single-digit micron fibres through a polyacrylonitrile coagulation process induced by a water sheath layer. The methodology developed here demonstrates fabrication strategies to interface complex architectures into classical microfluidic platforms. Using multiphoton lithography for in-chip fabrication adopts a high spatial resolution technology for improving geometry and thus flow control inside microfluidic chips. The showcased fabrication methodology is generic and will be applicable to multiple challenges in fluid control and beyond.
微流控是一个成熟的多学科研究领域,在医学、生物技术和工程领域有着广泛的应用。传统的微流控芯片制造方法仅限于平面结构,这限制了真正三维结构的应用,例如多相液滴制备或湿相纤维纺丝。在这里,我们挑战了在微流控芯片内部进行纳米制造的难题,展示了一种受蜘蛛启发的纺丝头。使用多光子光刻技术,一种增材制造方法,来制作自由形态的微流控母版,然后通过软光刻进行复制。通过多光子光刻技术,将一个三维的受蜘蛛启发的纺丝头直接在微流控器件中制造。通过应用这种前所未有的制造策略,制造出了迄今为止最小的打印纺丝头喷嘴。这个纺丝头紧密密封,与宏观世界相连。通过聚丙烯腈的水相凝固过程,它能够实现单根微米级纤维的湿法纺丝,这证明了其功能。这里开发的方法演示了将复杂结构集成到经典微流控平台的制造策略。使用多光子光刻进行芯片内制造采用了高空间分辨率技术,以改善微流控芯片内部的几何形状和流动控制。展示的制造方法具有通用性,将适用于多个流体控制领域的挑战。