Bhinge Suchita, Long Qunfang, Calhoun Vince D, Adalı Tülay
Department of Electrical and Computer Engineering, University of Maryland, Baltimore County, Baltimore, MD 21250 USA.
The Mind Research Network, Albuquerque, NM 87106 USA.
IEEE J Sel Top Signal Process. 2020 Oct;14(6):1255-1264. doi: 10.1109/jstsp.2020.3003891. Epub 2020 Jun 22.
There is a growing need for flexible methods for the analysis of large-scale functional magnetic resonance imaging (fMRI) data for the estimation of global signatures that summarize the population while preserving individual-specific traits. Independent vector analysis (IVA) is a data-driven method that jointly estimates global spatio-temporal patterns from multi-subject fMRI data, and effectively preserves subject variability. However, as we show, IVA performance is negatively affected when the number of datasets and components increases especially when there is low component correlation across the datasets. We study the problem and its relationship with respect to correlation across the datasets, and propose an effective method for addressing the issue by incorporating reference information of the estimation patterns into the formulation, as a guidance in high dimensional scenarios. Constrained IVA (cIVA) provides an efficient framework for incorporating references, however its performance depends on a user-defined constraint parameter, which enforces the association between the reference signals and estimation patterns to a fixed level. We propose adaptive cIVA (acIVA) that tunes the constraint parameter to allow flexible associations between the references and estimation patterns, and enables incorporating multiple reference signals, without enforcing inaccurate conditions. Our results indicate that acIVA can reliably estimate high-dimensional multivariate sources from large-scale simulated datasets, when compared with standard IVA. It also successfully extracts meaningful functional networks from a large-scale fMRI dataset for which standard IVA did not converge. The method also efficiently captures subject-specific information, which is demonstrated through observed gender differences in spectral power, higher spectral power in males at low frequencies and in females at high frequencies, within the motor, attention, visual and default mode networks.
对于灵活的方法来分析大规模功能磁共振成像(fMRI)数据以估计总结总体同时保留个体特定特征的全局特征而言,需求日益增长。独立向量分析(IVA)是一种数据驱动的方法,它从多主体fMRI数据中联合估计全局时空模式,并有效地保留主体变异性。然而,正如我们所展示的,当数据集和成分的数量增加时,尤其是当数据集之间的成分相关性较低时,IVA的性能会受到负面影响。我们研究了这个问题及其与数据集之间相关性的关系,并提出了一种有效的方法来解决该问题,即在高维场景中通过将估计模式的参考信息纳入公式中来作为指导。约束IVA(cIVA)提供了一个纳入参考的有效框架,但其性能取决于用户定义的约束参数,该参数将参考信号与估计模式之间的关联强制到一个固定水平。我们提出了自适应cIVA(acIVA),它调整约束参数以允许参考与估计模式之间进行灵活关联,并能够纳入多个参考信号,而无需强制不准确的条件。我们的结果表明,与标准IVA相比,acIVA能够从大规模模拟数据集中可靠地估计高维多元源。它还成功地从一个标准IVA未收敛的大规模fMRI数据集中提取了有意义的功能网络。该方法还有效地捕捉了个体特定信息,这在运动、注意力、视觉和默认模式网络中观察到的性别频谱功率差异中得到了证明,男性在低频时频谱功率较高,女性在高频时频谱功率较高。