Department of Electronics and Nanoengineering, Aalto University, Tietotie 3, FI-00076, Espoo, Finland.
Centre for Nanoscience and Nanotechnology (C2N), CNRS, Université Paris-Sud, Université Paris-Saclay, UMR 9001, 91405, Orsay Cedex, France.
Nat Commun. 2019 Jan 25;10(1):432. doi: 10.1038/s41467-019-08369-w.
Efficient and reliable on-chip optical amplifiers and light sources would enable versatile integration of various active functionalities on the silicon platform. Although lasing on silicon has been demonstrated with semiconductors by using methods such as wafer bonding or molecular beam epitaxy, cost-effective mass production methods for CMOS-compatible active devices are still lacking. Here, we report ultra-high on-chip optical gain in erbium-based hybrid slot waveguides with a monolithic, CMOS-compatible and scalable atomic-layer deposition process. The unique layer-by-layer nature of atomic-layer deposition enables atomic scale engineering of the gain layer properties and straightforward integration with silicon integrated waveguides. We demonstrate up to 20.1 ± 7.31 dB/cm and at least 52.4 ± 13.8 dB/cm net modal and material gain per unit length, respectively, the highest performance achieved from erbium-based planar waveguides integrated on silicon. Our results show significant advances towards efficient on-chip amplification, opening a route to large-scale integration of various active functionalities on silicon.
高效可靠的片上光放大器和光源将使各种有源功能在硅平台上实现多功能集成成为可能。尽管已经通过使用晶圆键合或分子束外延等方法在半导体上实现了硅激光,但对于与 CMOS 兼容的有源器件的具有成本效益的大规模生产方法仍缺乏研究。在此,我们报告了在具有单片、与 CMOS 兼容和可扩展原子层沉积工艺的掺铒混合槽波导中实现超高片上光增益。原子层沉积的独特逐层性质能够对增益层性能进行原子级工程设计,并与硅集成波导直接集成。我们分别演示了高达 20.1±7.31dB/cm 和至少 52.4±13.8dB/cm 的单位长度净模和材料增益,这是在硅上集成的基于铒的平面波导中实现的最高性能。我们的结果表明在高效片上放大方面取得了重大进展,为在硅上大规模集成各种有源功能开辟了道路。