Suppr超能文献

通过流体动力学聚焦增强芯片上单个病毒的检测

Enhanced Detection of Single Viruses On-Chip via Hydrodynamic Focusing.

作者信息

Black Jennifer A, Hamilton Erik, Hueros Raúl A Reyes, Parks Joshua W, Hawkins Aaron R, Schmidt Holger

机构信息

School of Engineering, University of California Santa Cruz, Santa Cruz, CA 95064 USA.

Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT 84602 USA.

出版信息

IEEE J Sel Top Quantum Electron. 2019 Jan-Feb;25(1). doi: 10.1109/JSTQE.2018.2854574. Epub 2018 Jul 9.

Abstract

Planar optofluidics provide a powerful tool for facilitating chip-scale light-matter interactions. Silicon-based liquid core waveguides have been shown to offer single molecule sensitivity for efficient detection of bioparticles. Recently, a PDMS based planar optofluidic platform was introduced that opens the way to rapid development and prototyping of unique structures, taking advantage of the positive attributes of silicon dioxide-based optofluidics and PDMS based microfluidics. Here, hydrodynamic focusing is integrated into a PDMS based optofluidic chip to enhance the detection of single H1N1 viruses on-chip. Chip-plane focusing is provided by a system of microfluidic channels to force the particles towards a region of high optical collection efficiency. Focusing is demonstrated and enhanced detection is quantified using fluorescent polystyrene beads where the coefficient of variation is found to decrease by a factor of 4 with the addition of hydrodynamic focusing. The mean signal amplitude of fluorescently tagged single H1N1 viruses is found to increase with the addition of focusing by a factor of 1.64.

摘要

平面光流体学为促进芯片级光与物质的相互作用提供了一个强大的工具。基于硅的液芯波导已被证明能够实现单分子灵敏度,以高效检测生物粒子。最近,一种基于聚二甲基硅氧烷(PDMS)的平面光流体平台被引入,它利用了基于二氧化硅的光流体学和基于PDMS的微流体学的积极特性,为独特结构的快速开发和原型制作开辟了道路。在此,流体动力聚焦被集成到基于PDMS的光流体芯片中,以增强芯片上对单个甲型H1N1流感病毒的检测。芯片平面聚焦由一个微流体通道系统提供,以迫使粒子朝向高光收集效率区域。使用荧光聚苯乙烯珠对聚焦进行了演示,并对增强检测进行了量化,发现随着流体动力聚焦的加入,变异系数降低了4倍。发现随着聚焦的加入,荧光标记的单个甲型H1N1流感病毒的平均信号幅度增加了1.64倍。

相似文献

1
Enhanced Detection of Single Viruses On-Chip via Hydrodynamic Focusing.
IEEE J Sel Top Quantum Electron. 2019 Jan-Feb;25(1). doi: 10.1109/JSTQE.2018.2854574. Epub 2018 Jul 9.
2
3
Planar optofluidic chip for single particle detection, manipulation, and analysis.
Lab Chip. 2007 Sep;7(9):1171-5. doi: 10.1039/b708861b. Epub 2007 Jun 27.
5
3D Hydrodynamic Focusing in Microscale Optofluidic Channels Formed with a Single Sacrificial Layer.
Micromachines (Basel). 2020 Mar 27;11(4):349. doi: 10.3390/mi11040349.
6
Optofluidic waveguides: I. Concepts and implementations.
Microfluid Nanofluidics. 2008 Jan 1;4(1-2):3-16. doi: 10.1007/s10404-007-0199-7.
7
Greatly Enhanced Single Particle Fluorescence Detection Using High Refractive Index Liquid-Core Waveguides.
IEEE J Sel Top Quantum Electron. 2021 Sep-Oct;27(5). doi: 10.1109/jstqe.2021.3055078. Epub 2021 Jan 28.
8
Enhancement of ARROW Photonic Device Performance via Thermal Annealing of PECVD-based SiO Waveguides.
IEEE J Sel Top Quantum Electron. 2016 Nov-Dec;22(6). doi: 10.1109/JSTQE.2016.2549801. Epub 2016 Apr 21.
9
Planar Optofluidic Integration of Ring Resonator and Microfluidic Channels.
Micromachines (Basel). 2022 Jun 28;13(7):1028. doi: 10.3390/mi13071028.
10
Hybrid optofluidic integration.
Lab Chip. 2013 Oct 21;13(20):4118-23. doi: 10.1039/c3lc50818h. Epub 2013 Aug 23.

引用本文的文献

1
Nano/microfluidic device for high-throughput passive trapping of nanoparticles.
Biomicrofluidics. 2023 Nov 1;17(6):064101. doi: 10.1063/5.0176323. eCollection 2023 Dec.
2
Comparison of Illumination Methods for Flow-Through Optofluidic Biosensors.
Micromachines (Basel). 2023 Mar 24;14(4):723. doi: 10.3390/mi14040723.
3
Microfluidics-Based POCT for SARS-CoV-2 Diagnostics.
Micromachines (Basel). 2022 Aug 1;13(8):1238. doi: 10.3390/mi13081238.
4
Ultrasensitive detection of SARS-CoV-2 RNA and antigen using single-molecule optofluidic chip.
APL Photonics. 2021 Jun;6(6). doi: 10.1063/5.0049735. Epub 2021 Jun 1.
5
3D hydrodynamic focusing in microscale channels formed with two photoresist layers.
Microfluid Nanofluidics. 2019 Nov;23(11). doi: 10.1007/s10404-019-2293-z. Epub 2019 Oct 15.
6
The Rise of the OM-LoC: Opto-Microfluidic Enabled Lab-on-Chip.
Micromachines (Basel). 2021 Nov 28;12(12):1467. doi: 10.3390/mi12121467.
7
Performance Comparison of Flow-Through Optofluidic Biosensor Designs.
Biosensors (Basel). 2021 Jul 7;11(7):226. doi: 10.3390/bios11070226.
8
Optofluidic Flow-Through Biosensor Sensitivity - Model and Experiment.
J Lightwave Technol. 2021 May 15;39(10):3330-3340. doi: 10.1109/jlt.2021.3061872. Epub 2021 Feb 24.
9
Microfluidic devices for the detection of viruses: aspects of emergency fabrication during the COVID-19 pandemic and other outbreaks.
Proc Math Phys Eng Sci. 2020 Nov;476(2243):20200398. doi: 10.1098/rspa.2020.0398. Epub 2020 Nov 4.
10
3D Hydrodynamic Focusing in Microscale Optofluidic Channels Formed with a Single Sacrificial Layer.
Micromachines (Basel). 2020 Mar 27;11(4):349. doi: 10.3390/mi11040349.

本文引用的文献

1
Optofluidic bioanalysis: fundamentals and applications.
Nanophotonics. 2017 Jul;6(4):647-661. doi: 10.1515/nanoph-2016-0156. Epub 2017 Mar 16.
3
Active droplet sorting in microfluidics: a review.
Lab Chip. 2017 Feb 28;17(5):751-771. doi: 10.1039/c6lc01435f.
6
Signal-to-noise Enhancement in Optical Detection of Single Viruses with Multi-spot Excitation.
IEEE J Sel Top Quantum Electron. 2016 Jul-Aug;22(4). doi: 10.1109/JSTQE.2015.2503321. Epub 2016 Mar 21.
7
Reconfigurable Solid-state Dye-doped Polymer Ring Resonator Lasers.
Sci Rep. 2015 Dec 17;5:18310. doi: 10.1038/srep18310.
8
Optofluidic wavelength division multiplexing for single-virus detection.
Proc Natl Acad Sci U S A. 2015 Oct 20;112(42):12933-7. doi: 10.1073/pnas.1511921112. Epub 2015 Oct 5.
10
All-polymer photonic crystal slab sensor.
Opt Express. 2015 Jun 29;23(13):16529-39. doi: 10.1364/OE.23.016529.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验