Suppr超能文献

基于头颈部放疗中对比噪声比的“双能束”双能CT用于危及器官勾画的最佳虚拟单能图像

Optimal virtual monoenergetic image in "TwinBeam" dual-energy CT for organs-at-risk delineation based on contrast-noise-ratio in head-and-neck radiotherapy.

作者信息

Wang Tonghe, Ghavidel Beth Bradshaw, Beitler Jonathan J, Tang Xiangyang, Lei Yang, Curran Walter J, Liu Tian, Yang Xiaofeng

机构信息

Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA.

Department of Radiology and Imaging Sciences and Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA.

出版信息

J Appl Clin Med Phys. 2019 Feb;20(2):121-128. doi: 10.1002/acm2.12539. Epub 2019 Jan 28.

Abstract

PURPOSE

Dual-energy computed tomography (DECT) using TwinBeam CT (TBCT) is a new option for radiation oncology simulators. TBCT scanning provides virtual monoenergetic images which are attractive in treatment planning since lower energies offer better contrast for soft tissues, and higher energies reduce noise. A protocol is needed to achieve optimal performance of this feature. In this study, we investigated the TBCT scan schema with the head-and-neck radiotherapy workflow at our clinic and selected the optimal energy with best contrast-noise-ratio (CNR) in organs-at-risks (OARs) delineation for head-and-neck treatment planning.

METHODS AND MATERIALS

We synthesized monochromatic images from 40 keV to 190 keV at 5 keV increments from data acquired by TBCT. We collected the Hounsfield unit (HU) numbers of OARs (brainstem, mandible, spinal cord, and parotid glands), the HU numbers of marginal regions outside OARs, and the noise levels for each monochromatic image. We then calculated the CNR for the different OARs at each energy level to generate a serial of spectral curves for each OAR. Based on these spectral curves of CNR, the mono-energy corresponding to the max CNR was identified for each OAR of each patient.

RESULTS

Computed tomography scans of ten patients by TBCT were used to test the optimal monoenergetic image for the CNR of OAR. Based on the maximized CNR, the optimal energy values were 78.5 ± 5.3 keV for the brainstem, 78.0 ± 4.2 keV for the mandible, 78.5 ± 5.7 keV for the parotid glands, and 78.5 ± 5.3 keV for the spinal cord. Overall, the optimal energy for the maximum CNR of these OARs in head-and-neck cancer patients was 80 keV.

CONCLUSION

We have proposed a clinically feasible protocol that selects the optimal energy level of the virtual monoenergetic image in TBCT for OAR delineation based on the CNR in head-and-neck OAR. This protocol can be applied in TBCT simulation.

摘要

目的

使用双能束CT(TBCT)的双能计算机断层扫描(DECT)是放射肿瘤学模拟定位仪的一种新选择。TBCT扫描可提供虚拟单能图像,在治疗计划中很有吸引力,因为较低能量能为软组织提供更好的对比度,而较高能量可降低噪声。需要一种方案来实现此功能的最佳性能。在本研究中,我们结合本诊所的头颈放疗工作流程,对头颈TBCT扫描方案进行了研究,并在头颈治疗计划的危及器官(OAR)勾画中,选择了具有最佳对比度噪声比(CNR)的最佳能量。

方法和材料

我们根据TBCT采集的数据,以5keV的增量合成了40keV至190keV的单色图像。我们收集了OAR(脑干、下颌骨、脊髓和腮腺)的Hounsfield单位(HU)值、OAR外部边缘区域的HU值以及每个单色图像的噪声水平。然后,我们计算了每个能量水平下不同OAR的CNR,以生成每个OAR的一系列光谱曲线。基于这些CNR光谱曲线,为每位患者的每个OAR确定对应最大CNR的单能量。

结果

利用TBCT对10例患者进行计算机断层扫描,以测试OAR的CNR最佳单能图像。基于最大化的CNR,脑干的最佳能量值为78.5±5.3keV,下颌骨为78.0±4.2keV,腮腺为78.5±5.7keV,脊髓为78.5±5.3keV。总体而言,头颈癌患者中这些OAR的最大CNR的最佳能量为80keV。

结论

我们提出了一种临床可行的方案,该方案基于头颈OAR中的CNR,选择TBCT中虚拟单能图像的最佳能量水平用于OAR勾画。该方案可应用于TBCT模拟。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a79/6370994/c26edabac5c5/ACM2-20-121-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验