Leibniz Institute of Vegetable and Ornamental Crops, Erfurt, Germany.
Leibniz Institute of Plant Genetics and Crop Plant Research, OT Gatersleben, Stadt Seeland, Germany.
Ann Bot. 2019 Jun 24;123(6):929-949. doi: 10.1093/aob/mcy234.
Adventitious root (AR) formation in excised plant parts is a bottleneck for survival of isolated plant fragments. AR formation plays an important ecological role and is a critical process in cuttings for the clonal propagation of horticultural and forestry crops. Therefore, understanding the regulation of excision-induced AR formation is essential for sustainable and efficient utilization of plant genetic resources.
Recent studies of plant transcriptomes, proteomes and metabolomes, and the use of mutants and transgenic lines have significantly expanded our knowledge concerning excision-induced AR formation. Here, we integrate new findings regarding AR formation in the cuttings of diverse plant species. These findings support a new system-oriented concept that the phytohormone-controlled reprogramming and differentiation of particular responsive cells in the cutting base interacts with a co-ordinated reallocation of plant resources within the whole cutting to initiate and drive excision-induced AR formation. Master control by auxin involves diverse transcription factors and mechanically sensitive microtubules, and is further linked to ethylene, jasmonates, cytokinins and strigolactones. Hormone functions seem to involve epigenetic factors and cross-talk with metabolic signals, reflecting the nutrient status of the cutting. By affecting distinct physiological units in the cutting, environmental factors such as light, nitrogen and iron modify the implementation of the genetically controlled root developmental programme.
Despite advanced research in the last decade, important questions remain open for future investigations on excision-induced AR formation. These concern the distinct roles and interactions of certain molecular, hormonal and metabolic factors, as well as the functional equilibrium of the whole cutting in a complex environment. Starting from model plants, cell type- and phase-specific monitoring of controlling processes and modification of gene expression are promising methodologies that, however, need to be integrated into a coherent model of the whole system, before research findings can be translated to other crops.
外植体不定根(AR)的形成是离体植物碎片存活的瓶颈。AR 的形成在园艺和林业作物的无性繁殖插条中起着重要的生态作用,是一个关键过程。因此,了解诱导外植体 AR 形成的调控机制对于可持续和高效地利用植物遗传资源至关重要。
最近对植物转录组、蛋白质组和代谢组的研究,以及对突变体和转基因系的利用,极大地扩展了我们对诱导外植体 AR 形成的认识。在这里,我们整合了关于不同植物物种插条中 AR 形成的新发现。这些发现支持了一个新的系统导向概念,即植物激素控制的特定响应细胞在插条基部的重编程和分化与整个插条内植物资源的协调再分配相互作用,从而启动和驱动诱导外植体 AR 的形成。生长素的主控作用涉及多种转录因子和机械敏感的微管,并进一步与乙烯、茉莉酸、细胞分裂素和独脚金内酯相关联。激素功能似乎涉及表观遗传因子和与代谢信号的串扰,反映了插条的营养状况。通过影响插条中的不同生理单位,环境因素如光照、氮和铁可以改变遗传控制的根发育程序的实施。
尽管在过去十年中进行了深入的研究,但在诱导外植体 AR 形成方面仍有一些重要问题有待进一步研究。这些问题涉及特定分子、激素和代谢因素的作用和相互作用,以及在复杂环境中整个插条的功能平衡。从模式植物开始,对控制过程的细胞类型和相特异性监测以及基因表达的修饰是很有前途的方法,但需要将这些方法整合到整个系统的一致模型中,然后才能将研究结果转化到其他作物上。