Suppr超能文献

线粒体在维持造血干细胞中的作用:新的视角和机遇。

Mitochondria in the maintenance of hematopoietic stem cells: new perspectives and opportunities.

机构信息

Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH; and.

Department of Cell, Developmental and Regenerative Biology.

出版信息

Blood. 2019 May 2;133(18):1943-1952. doi: 10.1182/blood-2018-10-808873. Epub 2019 Feb 26.

Abstract

The hematopoietic system produces new blood cells throughout life. Mature blood cells all derived from a pool of rare long-lived hematopoietic stem cells (HSCs) that are mostly quiescent but occasionally divide and self-renew to maintain the stem cell pool and to insure the continuous replenishment of blood cells. Mitochondria have recently emerged as critical not only for HSC differentiation and commitment but also for HSC homeostasis. Mitochondria are dynamic organelles that orchestrate a number of fundamental metabolic and signaling processes, producing most of the cellular energy via oxidative phosphorylation. HSCs have a relatively high amount of mitochondria that are mostly inactive. Here, we review recent advances in our understanding of the role of mitochondria in HSC homeostasis and discuss, among other topics, how mitochondrial dynamism and quality control might be implicated in HSC fate, self-renewal, and regenerative potential.

摘要

造血系统在整个生命过程中产生新的血细胞。成熟的血细胞都来源于一个稀有长寿造血干细胞(HSCs)池,这些细胞大多处于静止状态,但偶尔会分裂和自我更新,以维持干细胞池并确保血细胞的持续补充。线粒体最近不仅被认为对 HSC 的分化和定向起关键作用,而且对 HSC 的稳态也起关键作用。线粒体是一种动态细胞器,协调许多基本的代谢和信号转导过程,通过氧化磷酸化产生大部分细胞能量。HSCs 有相对较多的但大多处于非活跃状态的线粒体。在这里,我们综述了近年来对线粒体在 HSC 稳态中的作用的理解,并讨论了线粒体的动态性和质量控制如何可能与 HSC 的命运、自我更新和再生潜能有关等其他话题。

相似文献

1
Mitochondria in the maintenance of hematopoietic stem cells: new perspectives and opportunities.
Blood. 2019 May 2;133(18):1943-1952. doi: 10.1182/blood-2018-10-808873. Epub 2019 Feb 26.
2
Mitochondrial calcium homeostasis in hematopoietic stem cell: Molecular regulation of quiescence, function, and differentiation.
Int Rev Cell Mol Biol. 2021;362:111-140. doi: 10.1016/bs.ircmb.2021.05.003. Epub 2021 Jun 21.
3
Mitophagy in hematopoietic stem cells: the case for exploration.
Autophagy. 2013 Nov 1;9(11):1737-49. doi: 10.4161/auto.26681. Epub 2013 Oct 11.
4
Mechanisms controlling hematopoietic stem cell functions during normal hematopoiesis and hematological malignancies.
Wiley Interdiscip Rev Syst Biol Med. 2011 Nov-Dec;3(6):681-701. doi: 10.1002/wsbm.145. Epub 2011 Mar 15.
5
Deconstructing the Complexity of TGFβ Signaling in Hematopoietic Stem Cells: Quiescence and Beyond.
Curr Stem Cell Rep. 2016 Dec;2(4):388-397. doi: 10.1007/s40778-016-0069-x. Epub 2016 Oct 29.
6
Metabolism as master of hematopoietic stem cell fate.
Int J Hematol. 2019 Jan;109(1):18-27. doi: 10.1007/s12185-018-2534-z. Epub 2018 Sep 15.
7
[Metabolic regulation for cell fate decision of hematopoietic stem cells].
Rinsho Ketsueki. 2018;59(7):909-914. doi: 10.11406/rinketsu.59.909.
8
Hematopoietic stem cell fate through metabolic control.
Exp Hematol. 2018 Aug;64:1-11. doi: 10.1016/j.exphem.2018.05.005. Epub 2018 May 25.
9
Mitochondrial metabolism and the maintenance of hematopoietic stem cell quiescence.
Curr Opin Hematol. 2019 Jul;26(4):228-234. doi: 10.1097/MOH.0000000000000507.
10
Surviving change: the metabolic journey of hematopoietic stem cells.
Trends Cell Biol. 2014 Aug;24(8):479-87. doi: 10.1016/j.tcb.2014.04.001. Epub 2014 Apr 24.

引用本文的文献

5
Lymphopoiesis is attenuated upon hepatocyte-specific deletion of the cytochrome oxidase assembly factor .
iScience. 2025 Mar 3;28(4):112151. doi: 10.1016/j.isci.2025.112151. eCollection 2025 Apr 18.
7
Impact of PFOS Exposure on Murine Fetal Hematopoietic Stem Cells, Associated with Intrauterine Metabolic Perturbation.
Environ Sci Technol. 2025 Mar 25;59(11):5496-5509. doi: 10.1021/acs.est.5c02623. Epub 2025 Mar 13.
10
A Lgr5-independent developmental lineage is involved in mouse intestinal regeneration.
Development. 2025 Apr 1;152(7). doi: 10.1242/dev.204654. Epub 2025 Apr 10.

本文引用的文献

1
Membrane-potential compensation reveals mitochondrial volume expansion during HSC commitment.
Exp Hematol. 2018 Dec;68:30-37.e1. doi: 10.1016/j.exphem.2018.10.012. Epub 2018 Nov 3.
2
Deletion 6q Drives T-cell Leukemia Progression by Ribosome Modulation.
Cancer Discov. 2018 Dec;8(12):1614-1631. doi: 10.1158/2159-8290.CD-17-0831. Epub 2018 Sep 28.
3
Mechanisms of mitophagy in cellular homeostasis, physiology and pathology.
Nat Cell Biol. 2018 Sep;20(9):1013-1022. doi: 10.1038/s41556-018-0176-2. Epub 2018 Aug 28.
4
Ca-mitochondria axis drives cell division in hematopoietic stem cells.
J Exp Med. 2018 Aug 6;215(8):2097-2113. doi: 10.1084/jem.20180421. Epub 2018 Jun 26.
5
Transcription factors FOXO in the regulation of homeostatic hematopoiesis.
Curr Opin Hematol. 2018 Jul;25(4):290-298. doi: 10.1097/MOH.0000000000000441.
7
Dye-Independent Methods Reveal Elevated Mitochondrial Mass in Hematopoietic Stem Cells.
Cell Stem Cell. 2017 Dec 7;21(6):725-729.e4. doi: 10.1016/j.stem.2017.11.002. Epub 2017 Nov 30.
9
NADPH oxidase-2 derived superoxide drives mitochondrial transfer from bone marrow stromal cells to leukemic blasts.
Blood. 2017 Oct 5;130(14):1649-1660. doi: 10.1182/blood-2017-03-772939. Epub 2017 Jul 21.
10
Regulation of mitochondrial biogenesis in erythropoiesis by mTORC1-mediated protein translation.
Nat Cell Biol. 2017 Jun;19(6):626-638. doi: 10.1038/ncb3527. Epub 2017 May 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验