Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
Departments of Pharmacology, Penn State College of Medicine, Hershey, PA, 17033-0850, USA.
Nat Commun. 2019 Feb 27;10(1):948. doi: 10.1038/s41467-019-08876-w.
An array of carbohydrates masks the HIV-1 surface protein Env, contributing to the evasion of humoral immunity. In most HIV-1 isolates 'glycan holes' occur due to natural sequence variation, potentially revealing the underlying protein surface to the immune system. Here we computationally design epitopes that mimic such surface features (carbohydrate-occluded neutralization epitopes or CONE) of Env through 'epitope transplantation', in which the target region is presented on a carrier protein scaffold with preserved structural properties. Scaffolds displaying the four CONEs are examined for structure and immunogenicity. Crystal structures of two designed proteins reflect the computational models and accurately mimic the native conformations of CONEs. The sera from rabbits immunized with several CONE immunogens display Env binding activity. Our method determines essential structural elements for targets of protective antibodies. The ability to design immunogens with high mimicry to viral proteins also makes possible the exploration of new templates for vaccine development.
一系列碳水化合物掩盖了 HIV-1 表面蛋白 Env,导致体液免疫逃避。在大多数 HIV-1 分离株中,由于自然序列变异会产生“聚糖孔”,从而使免疫系统潜在地暴露潜在的蛋白表面。在这里,我们通过“表位移植”计算设计了模仿 Env 这种表面特征(糖基掩蔽中和表位或 CONE)的表位,其中目标区域在载体蛋白支架上呈现,保留了结构特性。对展示四个 CONE 的支架进行了结构和免疫原性检查。两个设计蛋白的晶体结构反映了计算模型,并准确模拟了 CONE 的天然构象。用几种 CONE 免疫原免疫的兔子的血清显示出对 Env 的结合活性。我们的方法确定了保护性抗体靶标的基本结构要素。用高模拟病毒蛋白的免疫原进行设计的能力也为疫苗开发探索新模板成为可能。