Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA.
Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey.
J Magn Reson Imaging. 2023 Oct;58(4):1200-1210. doi: 10.1002/jmri.28622. Epub 2023 Feb 2.
Although susceptibility-weighted imaging (SWI) is the gold standard for visualizing cerebral microbleeds (CMBs) in the brain, the required phase data are not always available clinically. Having a postprocessing tool for generating SWI contrast from T2*-weighted magnitude images is therefore advantageous.
To create synthetic SWI images from clinical T2*-weighted magnitude images using deep learning and evaluate the resulting images in terms of similarity to conventional SWI images and ability to detect radiation-associated CMBs.
Retrospective.
A total of 145 adults (87 males/58 females; 43.9 years old) with radiation-associated CMBs were used to train (16,093 patches/121 patients), validate (484 patches/4 patients), and test (2420 patches/20 patients) our networks.
FIELD STRENGTH/SEQUENCE: 3D T2*-weighted, gradient-echo acquired at 3 T.
Structural similarity index (SSIM), peak signal-to-noise-ratio (PSNR), normalized mean-squared-error (nMSE), CMB counts, and line profiles were compared among magnitude, original SWI, and synthetic SWI images. Three blinded raters (J.E.V.M., M.A.M., B.B. with 8-, 6-, and 4-years of experience, respectively) independently rated and classified test-set images.
Kruskall-Wallis and Wilcoxon signed-rank tests were used to compare SSIM, PSNR, nMSE, and CMB counts among magnitude, original SWI, and predicted synthetic SWI images. Intraclass correlation assessed interrater variability. P values <0.005 were considered statistically significant.
SSIM values of the predicted vs. original SWI (0.972, 0.995, 0.9864) were statistically significantly higher than that of the magnitude vs. original SWI (0.970, 0.994, 0.9861) for whole brain, vascular structures, and brain tissue regions, respectively; 67% (19/28) CMBs detected on original SWI images were also detected on the predicted SWI, whereas only 10 (36%) were detected on magnitude images. Overall image quality was similar between the synthetic and original SWI images, with less artifacts on the former.
This study demonstrated that deep learning can increase the susceptibility contrast present in neurovasculature and CMBs on T2*-weighted magnitude images, without residual susceptibility-induced artifacts. This may be useful for more accurately estimating CMB burden from magnitude images alone.
Stage 2.
尽管磁敏感加权成像(SWI)是可视化脑内微出血(CMBs)的金标准,但临床上并非总是能获得所需的相位数据。因此,拥有一种从 T2*-加权幅度图像生成 SWI 对比的后处理工具是有利的。
使用深度学习从临床 T2*-加权幅度图像中创建合成 SWI 图像,并根据与常规 SWI 图像的相似性和检测与辐射相关的 CMB 的能力来评估所得图像。
回顾性。
共有 145 名患有与辐射相关的 CMB 的成年人(87 名男性/58 名女性;43.9 岁)用于训练(121 名患者的 16093 个补丁/)、验证(4 名患者的 484 个补丁/)和测试(20 名患者的 2420 个补丁/)我们的网络。
磁场强度/序列:3T 采集的 3D T2*-加权梯度回波。
结构相似性指数(SSIM)、峰值信噪比(PSNR)、归一化均方误差(nMSE)、CMB 计数和线轮廓在幅度、原始 SWI 和合成 SWI 图像之间进行比较。三位盲法评分者(J.E.V.M.、M.A.M.和 B.B.,分别具有 8、6 和 4 年的经验)分别独立评分和分类测试集图像。
使用 Kruskal-Wallis 和 Wilcoxon 符号秩检验比较幅度、原始 SWI 和预测合成 SWI 图像之间的 SSIM、PSNR、nMSE 和 CMB 计数。组内相关评估了评分者之间的变异性。P 值<0.005 被认为具有统计学意义。
与原始 SWI 相比,预测与原始 SWI(0.972、0.995、0.9864)的 SSIM 值在全脑、血管结构和脑组织区域均统计学显著更高;67%(19/28)在原始 SWI 图像上检测到的 CMB 也在预测的 SWI 上检测到,而仅在幅度图像上检测到 10(36%)。合成和原始 SWI 图像之间的整体图像质量相似,前者的伪影较少。
本研究表明,深度学习可以增加 T2*-加权幅度图像中神经血管和 CMB 的磁化率对比度,而不会产生残留的磁化率诱导伪影。这可能有助于仅从幅度图像更准确地估计 CMB 负担。
3 级。
2 级。