Nanotechnology and Catalysis Research Centre, Institute of Graduate Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia.
Centre for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
Bioelectrochemistry. 2019 Jun;127:136-144. doi: 10.1016/j.bioelechem.2019.02.005. Epub 2019 Feb 11.
Recent foodborne outbreaks in multiple locations necessitate the continuous development of highly sensitive and specific biosensors that offer rapid detection of foodborne biological hazards. This work focuses on the development of a reduced graphene oxide‑titanium dioxide (rGO-TiO) nanocomposite based aptasensor to detect Salmonella enterica serovar Typhimurium. A label-free aptamer was immobilized on a rGO-TiO nanocomposite matrix through electrostatic interactions. The changes in electrical conductivity on the electrode surface were evaluated using electroanalytical methods. DNA aptamer adsorbed on the rGO-TiO surface bound to the bacterial cells at the electrode interface causing a physical barrier inhibiting the electron transfer. This interaction decreased the DPV signal of the electrode proportional to decreasing concentrations of the bacterial cells. The optimized aptasensor exhibited high sensitivity with a wide detection range (10 to 10 cfu mL), a low detection limit of 10 cfu mL and good selectivity for Salmonella bacteria. This rGO-TiO aptasensor is an excellent biosensing platform that offers a reliable, rapid and sensitive alternative for foodborne pathogen detection.
近期多地发生食源性疾病暴发事件,这就需要不断开发高度敏感和特异的生物传感器,以便快速检测食源性病原体。本工作专注于开发基于还原氧化石墨烯-二氧化钛(rGO-TiO)纳米复合材料的适配体传感器,用于检测鼠伤寒沙门氏菌。通过静电相互作用将无标记的适体固定在 rGO-TiO 纳米复合材料基质上。通过电化学生物分析方法评估电极表面电导率的变化。在电极界面处,吸附在 rGO-TiO 表面的 DNA 适配体与细菌细胞结合,形成物理障碍,抑制电子转移。这种相互作用会降低电极的 DPV 信号,信号降低的程度与细菌细胞浓度的降低成正比。优化后的适配体传感器具有高灵敏度,检测范围宽(10 至 10⁻¹⁰ cfu·mL⁻¹),检测限低至 10 cfu·mL⁻¹,对沙门氏菌具有良好的选择性。rGO-TiO 适配体传感器是一种优秀的生物传感平台,为食源性病原体检测提供了可靠、快速和灵敏的替代方法。