Suppr超能文献

通过机器学习和纠缠重整化对多环境开放量子动力学进行张量网络模拟。

Tensor network simulation of multi-environmental open quantum dynamics via machine learning and entanglement renormalisation.

机构信息

Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge, CB3 0HE, UK.

Department of Physics and Astronomy, University of Sheffield, Hounsfield Road, Sheffield, S3 7RH, UK.

出版信息

Nat Commun. 2019 Mar 5;10(1):1062. doi: 10.1038/s41467-019-09039-7.

Abstract

The simulation of open quantum dynamics is a critical tool for understanding how the non-classical properties of matter might be functionalised in future devices. However, unlocking the enormous potential of molecular quantum processes is highly challenging due to the very strong and non-Markovian coupling of 'environmental' molecular vibrations to the electronic 'system' degrees of freedom. Here, we present an advanced but general computational strategy that allows tensor network methods to effectively compute the non-perturbative, real-time dynamics of exponentially large vibronic wave functions of real molecules. We demonstrate how ab initio modelling, machine learning and entanglement analysis can enable simulations which provide real-time insight and direct visualisation of dissipative photophysics, and illustrate this with an example based on the ultrafast process known as singlet fission.

摘要

开放量子动力学的模拟是理解未来器件中物质的非经典性质如何被功能化的关键工具。然而,由于“环境”分子振动与电子“系统”自由度之间非常强的非马尔可夫耦合,解锁分子量子过程的巨大潜力极具挑战性。在这里,我们提出了一种先进但通用的计算策略,使张量网络方法能够有效地计算真实分子指数级大的振子波函数的非微扰、实时动力学。我们展示了如何通过从头计算建模、机器学习和纠缠分析来实现模拟,从而实时洞察和直接可视化耗散光物理,并以超快过程 singlet fission 为例进行说明。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1c3/6401190/3053b05bc475/41467_2019_9039_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验