Suppr超能文献

使用深度卷积神经网络从多机构多参数磁共振成像中检测前列腺癌。

Prostate cancer detection from multi-institution multiparametric MRIs using deep convolutional neural networks.

作者信息

Sumathipala Yohan, Lay Nathan, Turkbey Baris, Smith Clayton, Choyke Peter L, Summers Ronald M

机构信息

National Institutes of Health Clinical Center, Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and Imaging Sciences, Bethesda, Maryland, United States.

National Institutes of Health, National Cancer Institute, Molecular Imaging Program, Bethesda, Maryland, United States.

出版信息

J Med Imaging (Bellingham). 2018 Oct;5(4):044507. doi: 10.1117/1.JMI.5.4.044507. Epub 2018 Dec 15.

Abstract

Multiparametric magnetic resonance imaging (mpMRI) of the prostate aids in early diagnosis of prostate cancer, but is difficult to interpret and subject to interreader variability. Our objective is to generate probability maps, overlaid on original mpMRI images to help radiologists identify where a cancer is suspected as a computer-aided diagnostic (CAD). We optimized the holistically nested edge detection (HED) deep convolutional neural network. Our dataset contains T2, apparent diffusion coefficient, and high -value images from 186 patients across six institutions worldwide: 92 with an endorectal coil (ERC) and 94 without. Ground-truth was based on tumor segmentations manually drawn by expert radiologists based on histologic evidence of cancer. The training set consisted of 120 patients and the validation set and test set included 19 and 47, respectively. Slice-level probability maps are evaluated at the lesion level of analysis. The best model: HED using convolutional kernels, batch normalization, and optimized using Adam. This CAD performed significantly better ( ) in the peripheral zone ( ) than the transition zone. It outperforms a previous CAD from our group in a head-to-head comparison on the same ERC-only test cases ( ; ). Our CAD establishes a state-of-the-art performance for predicting prostate cancer lesions on mpMRIs.

摘要

前列腺多参数磁共振成像(mpMRI)有助于前列腺癌的早期诊断,但难以解读且存在阅片者间的差异。我们的目标是生成概率图,并叠加在原始mpMRI图像上,以帮助放射科医生识别疑似癌症的部位,作为一种计算机辅助诊断(CAD)工具。我们优化了全嵌套边缘检测(HED)深度卷积神经网络。我们的数据集包含来自全球六个机构的186例患者的T2加权、表观扩散系数和高b值图像:92例使用直肠内线圈(ERC),94例未使用。金标准基于专家放射科医生根据癌症组织学证据手动绘制的肿瘤分割图。训练集包括120例患者,验证集和测试集分别包括19例和47例。在病变分析层面评估切片级概率图。最佳模型:使用卷积核、批量归一化并采用Adam优化的HED。该CAD在外周区( )的表现明显优于移行区( )。在仅使用ERC的相同测试病例的直接比较中,它优于我们团队之前的CAD( ; )。我们的CAD在预测mpMRI上的前列腺癌病变方面建立了先进的性能。

相似文献

引用本文的文献

1
IR-GPT: AI Foundation Models to Optimize Interventional Radiology.IR-GPT:用于优化介入放射学的人工智能基础模型。
Cardiovasc Intervent Radiol. 2025 May;48(5):585-592. doi: 10.1007/s00270-024-03945-0. Epub 2025 Mar 26.
6
A review of artificial intelligence in prostate cancer detection on imaging.关于人工智能在前列腺癌影像检测中的综述。
Ther Adv Urol. 2022 Oct 10;14:17562872221128791. doi: 10.1177/17562872221128791. eCollection 2022 Jan-Dec.

本文引用的文献

3
Prostate Cancer: Improving the Flow of Research.前列腺癌:改善研究流程。
Radiology. 2018 Apr;287(1):5-9. doi: 10.1148/radiol.2018171046.
6
The Diagnosis and Treatment of Prostate Cancer: A Review.前列腺癌的诊断与治疗:综述
JAMA. 2017 Jun 27;317(24):2532-2542. doi: 10.1001/jama.2017.7248.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验