Suppr超能文献

基于手到嘴部动作规律分析的吸烟检测

Smoking detection based on regularity analysis of hand to mouth gestures.

作者信息

Senyurek Volkan Y, Imtiaz Masudul H, Belsare Prajakta, Tiffany Stephen, Sazonov Edward

机构信息

Department of Electrical and Computer Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA.

Department of Psychology, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA.

出版信息

Biomed Signal Process Control. 2019 May;51:106-112. doi: 10.1016/j.bspc.2019.01.026. Epub 2019 Feb 22.

Abstract

A number of studies have been introduced for the detection of smoking via a variety of features extracted from the wrist IMU data. However, none of the previous studies investigated gesture regularity as a way to detect smoking events. This study describes a novel method to detect smoking events by monitoring the regularity of hand gestures. Here, the regularity of hand gestures was estimated from a one axis accelerometer worn on the wrist of the dominant hand. To quantify the regularity score, this paper applied a novel approach of unbiased autocorrelation to process the temporal sequence of hand gestures. The comparison of regularity score of smoking events with other activities substantiated that hand-to-mouth gestures are highly regular during smoking events and have the potential to detect smoking from among a plethora of daily activities. This hypothesis was validated on a dataset of 140 cigarette smoking events generated by 35 regular smokers in a controlled setting. The regularity of gestures detected smoking events with an F1-score of 0.81. However, the accuracy dropped to 0.49 in the free-living study of same 35 smokers smoking 295 cigarettes. Nevertheless, regularity of gestures may be useful as a supportive tool for other detection methods. To validate that proposition, this paper further incorporated the regularity of gestures in an instrumented lighter based smoking detection algorithm and achieved an improvement in F1-score from 0.89 (lighter only) to 0.91 (lighter and regularity of hand gestures).

摘要

已经开展了多项研究,通过从手腕惯性测量单元(IMU)数据中提取的各种特征来检测吸烟行为。然而,以前的研究均未将手势规律性作为检测吸烟事件的一种方式进行调查。本研究描述了一种通过监测手部手势规律性来检测吸烟事件的新方法。在此,手部手势的规律性是通过佩戴在优势手手腕上的单轴加速度计来估计的。为了量化规律性得分,本文应用了一种新颖的无偏自相关方法来处理手部手势的时间序列。吸烟事件与其他活动的规律性得分比较证实,在吸烟事件期间,手到嘴的手势具有高度规律性,并且有潜力从大量日常活动中检测出吸烟行为。这一假设在35名经常吸烟的人在受控环境下产生的140次吸烟事件的数据集上得到了验证。检测吸烟事件的手势规律性的F1分数为0.81。然而,在对同一35名吸烟者吸食295支香烟的自由生活研究中,准确率降至0.49。尽管如此,手势规律性作为其他检测方法的辅助工具可能会很有用。为了验证这一观点,本文进一步将手势规律性纳入基于仪器打火机的吸烟检测算法中,F1分数从0.89(仅打火机)提高到了0.91(打火机和手部手势规律性)。

相似文献

1
Smoking detection based on regularity analysis of hand to mouth gestures.
Biomed Signal Process Control. 2019 May;51:106-112. doi: 10.1016/j.bspc.2019.01.026. Epub 2019 Feb 22.
2
Cigarette Smoking Detection with An Inertial Sensor and A Smart Lighter.
Sensors (Basel). 2019 Jan 29;19(3):570. doi: 10.3390/s19030570.
3
Development of a Multisensory Wearable System for Monitoring Cigarette Smoking Behavior in Free-Living Conditions.
Electronics (Basel). 2017 Dec;6(4). doi: 10.3390/electronics6040104. Epub 2017 Nov 28.
5
Detection of Hand-to-Mouth Gestures Using a RF Operated Proximity Sensor for Monitoring Cigarette Smoking.
Open Biomed Eng J. 2013 Apr 5;9:41-9. doi: 10.2174/1874120701307010041. Print 2013.
6
Multimodal hand gesture recognition using single IMU and acoustic measurements at wrist.
PLoS One. 2020 Jan 13;15(1):e0227039. doi: 10.1371/journal.pone.0227039. eCollection 2020.
7
Wrist-Worn Hand Gesture Recognition While Walking via Transfer Learning.
IEEE J Biomed Health Inform. 2022 Mar;26(3):952-961. doi: 10.1109/JBHI.2021.3100099. Epub 2022 Mar 7.
8
Objective Detection of Cigarette Smoking from Physiological Sensor Signals.
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:3563-3566. doi: 10.1109/EMBC.2019.8856831.
9
An End-to-End Energy-Efficient Approach for Intake Detection With Low Inference Time Using Wrist-Worn Sensor.
IEEE J Biomed Health Inform. 2023 Aug;27(8):3878-3888. doi: 10.1109/JBHI.2023.3276629. Epub 2023 Aug 7.
10
Drinking Gesture Detection Using Wrist-Worn IMU Sensors with Multi-Stage Temporal Convolutional Network in Free-Living Environments.
Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:1778-1782. doi: 10.1109/EMBC48229.2022.9871817.

引用本文的文献

1
HabitSense: A Privacy-Aware, AI-Enhanced Multimodal Wearable Platform for mHealth Applications.
Proc ACM Interact Mob Wearable Ubiquitous Technol. 2024 Sep;8(3). doi: 10.1145/3678591. Epub 2024 Sep 9.
2
Sensors for Smoking Detection in Epidemiological Research: Scoping Review.
JMIR Mhealth Uhealth. 2024 Oct 30;12:e52383. doi: 10.2196/52383.
3
SmokeMon: Unobtrusive Extraction of Smoking Topography Using Wearable Energy-Efficient Thermal.
Proc ACM Interact Mob Wearable Ubiquitous Technol. 2022 Dec;6(4). doi: 10.1145/3569460. Epub 2023 Jan 11.
5
Electromyogram in Cigarette Smoking Activity Recognition.
Signals (Basel). 2021 Mar;2(1):87-97. doi: 10.3390/signals2010008. Epub 2021 Feb 9.
6
CNN-Based Smoker Classification and Detection in Smart City Application.
Sensors (Basel). 2022 Jan 24;22(3):892. doi: 10.3390/s22030892.
7
A CNN-LSTM neural network for recognition of puffing in smoking episodes using wearable sensors.
Biomed Eng Lett. 2020 Jan 30;10(2):195-203. doi: 10.1007/s13534-020-00147-8. eCollection 2020 May.
8
A Report on Smoking Detection and Quitting Technologies.
Int J Environ Res Public Health. 2020 Apr 10;17(7):2614. doi: 10.3390/ijerph17072614.
9
Computation of Cigarette Smoke Exposure Metrics From Breathing.
IEEE Trans Biomed Eng. 2020 Aug;67(8):2309-2316. doi: 10.1109/TBME.2019.2958843. Epub 2019 Dec 10.
10
Wearable Egocentric Camera as a Monitoring Tool of Free-Living Cigarette Smoking: A Feasibility Study.
Nicotine Tob Res. 2020 Oct 8;22(10):1883-1890. doi: 10.1093/ntr/ntz208.

本文引用的文献

1
Development of a Multisensory Wearable System for Monitoring Cigarette Smoking Behavior in Free-Living Conditions.
Electronics (Basel). 2017 Dec;6(4). doi: 10.3390/electronics6040104. Epub 2017 Nov 28.
2
E-cigarettes and smoking cessation in real-world and clinical settings: a systematic review and meta-analysis.
Lancet Respir Med. 2016 Feb;4(2):116-28. doi: 10.1016/S2213-2600(15)00521-4. Epub 2016 Jan 14.
3
RisQ: Recognizing Smoking Gestures with Inertial Sensors on a Wristband.
MobiSys. 2014 Jun;2014:149-161. doi: 10.1145/2594368.2594379.
4
Efficacy of SMS Text Message Interventions for Smoking Cessation: A Meta-Analysis.
J Subst Abuse Treat. 2015 Sep;56:1-10. doi: 10.1016/j.jsat.2015.01.011. Epub 2015 Feb 2.
5
Laboratory Validation of Inertial Body Sensors to Detect Cigarette Smoking Arm Movements.
Electronics (Basel). 2014 Feb 27;3(1):87-110. doi: 10.3390/electronics3010087.
6
Annual healthcare spending attributable to cigarette smoking: an update.
Am J Prev Med. 2015 Mar;48(3):326-33. doi: 10.1016/j.amepre.2014.10.012. Epub 2014 Dec 10.
9
Real-time gait cycle parameter recognition using a wearable accelerometry system.
Sensors (Basel). 2011;11(8):7314-26. doi: 10.3390/s110807314. Epub 2011 Jul 25.
10
College smoking-cessation using cell phone text messaging.
J Am Coll Health. 2004 Sep-Oct;53(2):71-8. doi: 10.3200/JACH.53.2.71-78.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验