文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

采用加拿大一枝黄花(Solidago canadensis)植物提取物制备的银、金和银-金双金属纳米颗粒的细胞毒性。

Cytotoxicity of Ag, Au and Ag-Au bimetallic nanoparticles prepared using golden rod (Solidago canadensis) plant extract.

机构信息

Water Research Group, Unit for Environmental Sciences and Management, Potchefstroom Campus, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.

Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Agriculture, Science and Technology, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho, 2735, South Africa.

出版信息

Sci Rep. 2019 Mar 12;9(1):4169. doi: 10.1038/s41598-019-40816-y.


DOI:10.1038/s41598-019-40816-y
PMID:30862803
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6414615/
Abstract

Production and use of metallic nanoparticles have increased dramatically over the past few years and design of nanomaterials has been developed to minimize their toxic potencies. Traditional chemical methods of production are potentially harmful to the environment and greener methods for synthesis are being developed in order to address this. Thus far phytosynthesis have been found to yield nanomaterials of lesser toxicities, compared to materials synthesized by use of chemical methods. In this study nanoparticles were synthesized from an extract of leaves of golden rod (Solidago canadensis). Silver (Ag), gold (Au) and Ag-Au bimetallic nanoparticles (BNPs), synthesized by use of this "green" method, were evaluated for cytotoxic potency. Cytotoxicity of nanomaterials to H4IIE-luc (rat hepatoma) cells and HuTu-80 (human intestinal) cells were determined by use of the xCELLigence real time cell analyzer. Greatest concentrations (50 µg/mL) of Ag and Ag-Au bimetallic were toxic to both H4IIE-luc and HuTu-80 cells but Au nanoparticles were not toxic. BNPs exhibited the greatest toxic potency to these two types of cells and since AuNPs caused no toxicity; the Au functional portion of the bimetallic material could be assisting in uptake of particles across the cell membrane thereby increasing the toxicity.

摘要

在过去的几年中,金属纳米粒子的生产和使用急剧增加,纳米材料的设计也得到了发展,以尽量降低其毒性。传统的生产化学方法可能对环境有害,因此正在开发更环保的合成方法来解决这个问题。到目前为止,与使用化学方法合成的材料相比,植物合成被发现产生的纳米材料毒性较小。在这项研究中,从加拿大一枝黄花(Solidago canadensis)的叶提取物中合成了纳米颗粒。通过这种“绿色”方法合成的银(Ag)、金(Au)和 Ag-Au 双金属纳米颗粒(BNPs)被评估其细胞毒性。使用 xCELLigence 实时细胞分析仪测定纳米材料对 H4IIE-luc(大鼠肝癌)细胞和 HuTu-80(人肠)细胞的细胞毒性。Ag 和 Ag-Au 双金属的最大浓度(50μg/mL)对 H4IIE-luc 和 HuTu-80 细胞均有毒性,但 Au 纳米颗粒没有毒性。BNPs 对这两种类型的细胞表现出最大的毒性,并且由于 AuNPs 没有引起毒性;因此双金属材料中的 Au 功能部分可能有助于将颗粒穿过细胞膜摄取,从而增加毒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/977c/6414615/61a8732121c6/41598_2019_40816_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/977c/6414615/ef0d46cdf761/41598_2019_40816_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/977c/6414615/995bc87c80f5/41598_2019_40816_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/977c/6414615/1e3efc753ab2/41598_2019_40816_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/977c/6414615/e27612b0edd7/41598_2019_40816_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/977c/6414615/5b12faea5a67/41598_2019_40816_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/977c/6414615/ae36b6a04b6b/41598_2019_40816_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/977c/6414615/c414b93e1939/41598_2019_40816_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/977c/6414615/61a8732121c6/41598_2019_40816_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/977c/6414615/ef0d46cdf761/41598_2019_40816_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/977c/6414615/995bc87c80f5/41598_2019_40816_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/977c/6414615/1e3efc753ab2/41598_2019_40816_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/977c/6414615/e27612b0edd7/41598_2019_40816_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/977c/6414615/5b12faea5a67/41598_2019_40816_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/977c/6414615/ae36b6a04b6b/41598_2019_40816_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/977c/6414615/c414b93e1939/41598_2019_40816_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/977c/6414615/61a8732121c6/41598_2019_40816_Fig8_HTML.jpg

相似文献

[1]
Cytotoxicity of Ag, Au and Ag-Au bimetallic nanoparticles prepared using golden rod (Solidago canadensis) plant extract.

Sci Rep. 2019-3-12

[2]
Biosynthesis of Au, Ag and Au-Ag bimetallic nanoparticles using protein extracts of and evaluation of their cytotoxicity.

Int J Nanomedicine. 2018-3-9

[3]
Comparative Study of Antimicrobial Activity of Silver, Gold, and Silver/Gold Bimetallic Nanoparticles Synthesized by Green Approach.

Molecules. 2022-11-15

[4]
Green synthesis of silver, gold and silver/gold bimetallic nanoparticles using the Gloriosa superba leaf extract and their antibacterial and antibiofilm activities.

Microb Pathog. 2016-12

[5]
Comparative toxicity study of Ag, Au, and Ag-Au bimetallic nanoparticles on Daphnia magna.

Anal Bioanal Chem. 2010-6-26

[6]
Biological synergy of greener gold nanoparticles by using Coleus aromaticus leaf extract.

Mater Sci Eng C Mater Biol Appl. 2019-1-25

[7]
Ag/Au bimetallic nanoparticles induce apoptosis in human cancer cell lines via P53, CASPASE-3 and BAX/BCL-2 pathways.

Artif Cells Nanomed Biotechnol. 2018-10-29

[8]
Biosynthesis of silver and gold nanoparticles using Musa acuminata colla flower and its pharmaceutical activity against bacteria and anticancer efficacy.

J Photochem Photobiol B. 2019-10-31

[9]
Catalytic and anti-cancer properties of platinum, gold, silver, and bimetallic Au-Ag nanoparticles synthesized by Bacillus sp. bacteria.

J Biotechnol. 2024-1-10

[10]
Phytosynthesis of Au, Ag and Au-Ag bimetallic nanoparticles using aqueous extract and dried leaf of Anacardium occidentale.

Spectrochim Acta A Mol Biomol Spectrosc. 2011-3-5

引用本文的文献

[1]
Boron carbide nanoparticles for boron neutron capture therapy.

RSC Adv. 2025-4-7

[2]
A mechanistic overview on green assisted formulation of nanocomposites and their multifunctional role in biomedical applications.

Heliyon. 2025-1-8

[3]
An Adverse Outcome Pathway for food nanomaterial-induced intestinal barrier disruption.

Front Toxicol. 2024-12-24

[4]
Biosynthesis, Characterization, and Antibacterial Activity of Gold, Silver, and Bimetallic Nanoparticles Using L. Leaves.

Antibiotics (Basel). 2024-12-9

[5]
The Invasive Alien Plant : Phytochemical Composition, Ecosystem Service Potential, and Application in Bioeconomy.

Plants (Basel). 2024-6-24

[6]
Harvesting the Power of Green Synthesis: Gold Nanoparticles Tailored for Prostate Cancer Therapy.

Int J Mol Sci. 2024-2-14

[7]
A new vision of photothermal therapy assisted with gold nanorods for the treatment of mammary cancers in adult female rats.

Nanoscale Adv. 2023-12-4

[8]
Bioactive ZnO Nanoparticles: Biosynthesis, Characterization and Potential Antimicrobial Applications.

Pharmaceutics. 2023-11-16

[9]
Anticancer Activity of Au/CNT Nanocomposite Fabricated by Nanosecond Pulsed Laser Ablation Method on Colon and Cervical Cancer.

Micromachines (Basel). 2023-7-20

[10]
Recent advances of Au@Ag core-shell SERS-based biosensors.

Exploration (Beijing). 2023-2-7

本文引用的文献

[1]
Analysis of metallic and metal oxide nanomaterial environmental emissions.

J Clean Prod. 2017-2-1

[2]
Moringa oleifera and their phytonanoparticles: Potential antiproliferative agents against cancer.

Biomed Pharmacother. 2018-9-18

[3]
Role of gold and silver nanoparticles in cancer nano-medicine.

Artif Cells Nanomed Biotechnol. 2018-3-13

[4]
Form Follows Function: Nanoparticle Shape and Its Implications for Nanomedicine.

Chem Rev. 2017-9-1

[5]
The agglomeration state of nanoparticles can influence the mechanism of their cellular internalisation.

J Nanobiotechnology. 2017-6-26

[6]
Green Synthesis of Ag/Ag₂O Nanoparticles Using Aqueous Leaf Extract of Eupatorium odoratum and Its Antimicrobial and Mosquito Larvicidal Activities.

Molecules. 2017-4-28

[7]
Nanotoxicity: An Interplay of Oxidative Stress, Inflammation and Cell Death.

Nanomaterials (Basel). 2015-6-30

[8]
Biological activity of green-synthesized silver nanoparticles depends on the applied natural extracts: a comprehensive study.

Int J Nanomedicine. 2017-1-27

[9]
Phytosynthesized gold nanoparticles from C. roxburghii DC. leaf and their toxic effects on normal and cancer cell lines.

J Photochem Photobiol B. 2016-12

[10]
Green synthesis of silver nanoparticles via plant extracts: beginning a new era in cancer theranostics.

Nanomedicine (Lond). 2016-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索