Suppr超能文献

大健康数据与心血管疾病:研究的挑战,临床护理的机遇。

Big Health Data and Cardiovascular Diseases: A Challenge for Research, an Opportunity for Clinical Care.

作者信息

Silverio Angelo, Cavallo Pierpaolo, De Rosa Roberta, Galasso Gennaro

机构信息

Cardiology Unit, Cardiovascular and Thoracic Department, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, Italy.

Department of Physics "E.R. Caianiello", University of Salerno, Salerno, Italy.

出版信息

Front Med (Lausanne). 2019 Feb 25;6:36. doi: 10.3389/fmed.2019.00036. eCollection 2019.

Abstract

Cardiovascular disease (CVD) accounts for the majority of death and hospitalization, health care expenditures and loss of productivity in developed country. CVD research, thus, plays a key role for improving patients' outcomes as well as for the sustainability of health systems. The increasing costs and complexity of modern medicine along with the fragmentation in healthcare organizations interfere with improving quality care and represent a missed opportunity for research. The advancement in diagnosis, therapy and prognostic evaluation of patients with CVD, indeed, is frustrated by limited data access to selected small patient populations, not standardized nor computable definition of disease and lack of approved relevant patient-centered outcomes. These critical issues results in a deep mismatch between randomized controlled trials and real-world setting, heterogeneity in treatment response and wide inter-individual variation in prognosis. Big data approach combines millions of people's electronic health records (EHR) from different resources and provides a new methodology expanding data collection in three direction: high volume, wide variety and extreme acquisition speed. Large population studies based on EHR holds much promise due to low costs, diminished study participant burden, and reduced selection bias, thus offering an alternative to traditional ascertainment through biomedical screening and tracing processes. By merging and harmonizing large data sets, the researchers aspire to build algorithms that allow targeted and personalized CVD treatments. In current paper, we provide a critical review of big health data for cardiovascular research, focusing on the opportunities of this largely free data analytics and the challenges in its realization.

摘要

心血管疾病(CVD)在发达国家导致了大多数的死亡和住院情况,以及医疗保健支出和生产力损失。因此,CVD研究对于改善患者预后以及卫生系统的可持续性起着关键作用。现代医学成本的不断增加和复杂性,以及医疗保健组织的碎片化,妨碍了优质护理的改善,也代表着研究机会的错失。事实上,CVD患者在诊断、治疗和预后评估方面的进展因以下因素而受阻:获取选定小患者群体数据有限、疾病定义不标准化且不可计算,以及缺乏经批准的以患者为中心的相关结局。这些关键问题导致随机对照试验与现实世界之间存在严重不匹配、治疗反应的异质性以及预后的个体间广泛差异。大数据方法整合了来自不同资源的数百万人的电子健康记录(EHR),并提供了一种新的方法,从三个方向扩展数据收集:高容量、多样化和极快的获取速度。基于EHR的大规模人群研究由于成本低、研究参与者负担减轻和选择偏倚减少而具有很大潜力,从而为通过生物医学筛查和追踪过程进行传统确诊提供了一种替代方法。通过合并和协调大型数据集,研究人员希望构建能够实现有针对性和个性化CVD治疗的算法。在本文中,我们对用于心血管研究的大健康数据进行了批判性综述,重点关注这种基本上免费的数据分析的机会及其实现过程中的挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/110e/6401640/e4d86a63607a/fmed-06-00036-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验