Suppr超能文献

通过体积深度残差网络整合先验知识以优化稀疏采样磁共振成像的重建

Incorporating prior knowledge via volumetric deep residual network to optimize the reconstruction of sparsely sampled MRI.

作者信息

Wu Yan, Ma Yajun, Capaldi Dante Pietro, Liu Jing, Zhao Wei, Du Jiang, Xing Lei

机构信息

Radiation Oncology Department, Stanford University, Stanford 94305, CA, USA.

Radiology Department, University of California San Diego, La Jolla 92093, CA, USA.

出版信息

Magn Reson Imaging. 2020 Feb;66:93-103. doi: 10.1016/j.mri.2019.03.012. Epub 2019 Mar 14.

Abstract

For sparse sampling that accelerates magnetic resonance (MR) image acquisition, non-linear reconstruction algorithms have been developed, which incorporated patient specific a prior information. More generic a prior information could be acquired via deep learning and utilized for image reconstruction. In this study, we developed a volumetric hierarchical deep residual convolutional neural network, referred to as T-Net, to provide a data-driven end-to-end mapping from sparsely sampled MR images to fully sampled MR images, where cartilage MR images were acquired using an Ultra-short TE sequence and retrospectively undersampled using pseudo-random Cartesian and radial acquisition schemes. The network had a hierarchical architecture that promoted the sparsity of feature maps and increased the receptive field, which were valuable for signal synthesis and artifact suppression. Relatively dense local connections and global shortcuts were established to facilitate residual learning and compensate for details lost in hierarchical processing. Additionally, volumetric processing was adopted to fully exploit spatial continuity in three-dimensional space. Data consistency was further enforced. The network was trained with 336 three-dimensional images (each consisting of 32 slices) and tested by 24 images. The incorporation of a priori information acquired via deep learning facilitated high acceleration factors (as high as 8) while maintaining high image fidelity (quantitatively evaluated using the structural similarity index measurement). The proposed T-Net had an improved performance as compared to several state-of-the-art networks.

摘要

为了加速磁共振(MR)图像采集的稀疏采样,已经开发了非线性重建算法,这些算法纳入了患者特定的先验信息。可以通过深度学习获取更通用的先验信息并将其用于图像重建。在本研究中,我们开发了一种体积分层深度残差卷积神经网络,称为T-Net,以提供从稀疏采样的MR图像到全采样MR图像的数据驱动的端到端映射,其中软骨MR图像使用超短TE序列采集,并使用伪随机笛卡尔和径向采集方案进行回顾性欠采样。该网络具有分层架构,可促进特征图的稀疏性并增加感受野,这对于信号合成和伪影抑制很有价值。建立了相对密集的局部连接和全局捷径,以促进残差学习并补偿分层处理中丢失的细节。此外,采用体积处理来充分利用三维空间中的空间连续性。进一步加强了数据一致性。该网络用336张三维图像(每张由32个切片组成)进行训练,并用24张图像进行测试。通过深度学习获取的先验信息的纳入有助于实现高加速因子(高达8),同时保持高图像保真度(使用结构相似性指数测量进行定量评估)。与几个最先进的网络相比,所提出的T-Net具有更好的性能。

相似文献

1
Incorporating prior knowledge via volumetric deep residual network to optimize the reconstruction of sparsely sampled MRI.
Magn Reson Imaging. 2020 Feb;66:93-103. doi: 10.1016/j.mri.2019.03.012. Epub 2019 Mar 14.
2
Self-Attention Convolutional Neural Network for Improved MR Image Reconstruction.
Inf Sci (N Y). 2019 Jul;490:317-328. doi: 10.1016/j.ins.2019.03.080. Epub 2019 Apr 1.
3
MANTIS: Model-Augmented Neural neTwork with Incoherent k-space Sampling for efficient MR parameter mapping.
Magn Reson Med. 2019 Jul;82(1):174-188. doi: 10.1002/mrm.27707. Epub 2019 Mar 12.
4
An End-to-End Recurrent Neural Network for Radial MR Image Reconstruction.
Sensors (Basel). 2022 Sep 26;22(19):7277. doi: 10.3390/s22197277.
5
MRI reconstruction with enhanced self-similarity using graph convolutional network.
BMC Med Imaging. 2024 May 17;24(1):113. doi: 10.1186/s12880-024-01297-2.
7
KIKI-net: cross-domain convolutional neural networks for reconstructing undersampled magnetic resonance images.
Magn Reson Med. 2018 Nov;80(5):2188-2201. doi: 10.1002/mrm.27201. Epub 2018 Apr 6.
8
MRI Gibbs-ringing artifact reduction by means of machine learning using convolutional neural networks.
Magn Reson Med. 2019 Dec;82(6):2133-2145. doi: 10.1002/mrm.27894. Epub 2019 Aug 2.
9
A cross-domain complex convolution neural network for undersampled magnetic resonance image reconstruction.
Magn Reson Imaging. 2024 May;108:86-97. doi: 10.1016/j.mri.2024.02.004. Epub 2024 Feb 7.

引用本文的文献

2
Tendon evaluation with ultrashort Echo Time (UTE) MRI: A Systematic Review.
Front Musculoskelet Disord. 2024;2. doi: 10.3389/fmscd.2024.1324050. Epub 2024 Mar 14.
3
A review of deep learning-based reconstruction methods for accelerated MRI using spatiotemporal and multi-contrast redundancies.
Biomed Eng Lett. 2024 Sep 17;14(6):1221-1242. doi: 10.1007/s13534-024-00425-9. eCollection 2024 Nov.
4
An overview of artificial intelligence in medical physics and radiation oncology.
J Natl Cancer Cent. 2023 Aug 11;3(3):211-221. doi: 10.1016/j.jncc.2023.08.002. eCollection 2023 Sep.
5
Emerging Trends in Fast MRI Using Deep-Learning Reconstruction on Undersampled k-Space Data: A Systematic Review.
Bioengineering (Basel). 2023 Aug 26;10(9):1012. doi: 10.3390/bioengineering10091012.
6
Whole knee joint mapping using a phase modulated UTE adiabatic T (PM-UTE-AdiabT ) sequence.
Magn Reson Med. 2024 Mar;91(3):896-910. doi: 10.1002/mrm.29871. Epub 2023 Sep 27.
7
The promise and limitations of artificial intelligence in musculoskeletal imaging.
Front Radiol. 2023 Aug 7;3:1242902. doi: 10.3389/fradi.2023.1242902. eCollection 2023.
9
Deep Learning-Based Water-Fat Separation from Dual-Echo Chemical Shift-Encoded Imaging.
Bioengineering (Basel). 2022 Oct 19;9(10):579. doi: 10.3390/bioengineering9100579.
10
Real time volumetric MRI for 3D motion tracking via geometry-informed deep learning.
Med Phys. 2022 Sep;49(9):6110-6119. doi: 10.1002/mp.15822. Epub 2022 Jul 6.

本文引用的文献

1
A Transfer-Learning Approach for Accelerated MRI Using Deep Neural Networks.
Magn Reson Med. 2020 Aug;84(2):663-685. doi: 10.1002/mrm.28148. Epub 2020 Jan 3.
2
ACCELERATING MAGNETIC RESONANCE IMAGING VIA DEEP LEARNING.
Proc IEEE Int Symp Biomed Imaging. 2016 Apr;2016:514-517. doi: 10.1109/ISBI.2016.7493320. Epub 2016 Jun 16.
3
Superpixel-based and boundary-sensitive convolutional neural network for automated liver segmentation.
Phys Med Biol. 2018 May 4;63(9):095017. doi: 10.1088/1361-6560/aabd19.
4
Image reconstruction by domain-transform manifold learning.
Nature. 2018 Mar 21;555(7697):487-492. doi: 10.1038/nature25988.
5
NiftyNet: a deep-learning platform for medical imaging.
Comput Methods Programs Biomed. 2018 May;158:113-122. doi: 10.1016/j.cmpb.2018.01.025. Epub 2018 Jan 31.
6
3D adiabatic T prepared ultrashort echo time cones sequence for whole knee imaging.
Magn Reson Med. 2018 Oct;80(4):1429-1439. doi: 10.1002/mrm.27131. Epub 2018 Feb 28.
7
Artificial intelligence will soon change the landscape of medical physics research and practice.
Med Phys. 2018 May;45(5):1791-1793. doi: 10.1002/mp.12831. Epub 2018 Mar 13.
8
Deep learning with domain adaptation for accelerated projection-reconstruction MR.
Magn Reson Med. 2018 Sep;80(3):1189-1205. doi: 10.1002/mrm.27106. Epub 2018 Feb 4.
9
Learning a variational network for reconstruction of accelerated MRI data.
Magn Reson Med. 2018 Jun;79(6):3055-3071. doi: 10.1002/mrm.26977. Epub 2017 Nov 8.
10
Image Super-Resolution Using Deep Convolutional Networks.
IEEE Trans Pattern Anal Mach Intell. 2016 Feb;38(2):295-307. doi: 10.1109/TPAMI.2015.2439281.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验