1 Department of Biochemistry, University of Otago , PO Box 56, Dunedin 9054 , New Zealand.
2 Department of Microbiology and Immunology, University of Otago , PO Box 56, Dunedin 9054 , New Zealand.
Philos Trans R Soc Lond B Biol Sci. 2019 May 13;374(1772):20180384. doi: 10.1098/rstb.2018.0384.
CRISPR-Cas systems are widespread in bacterial and archaeal genomes, and in their canonical role in phage defence they confer a fitness advantage. However, CRISPR-Cas may also hinder the uptake of potentially beneficial genes. This is particularly true under antibiotic selection, where preventing the uptake of antibiotic resistance genes could be detrimental. Newly discovered features within these evolutionary dynamics are anti-CRISPR genes, which inhibit specific CRISPR-Cas systems. We hypothesized that selection for antibiotic resistance might have resulted in an accumulation of anti-CRISPR genes in genomes that harbour CRISPR-Cas systems and horizontally acquired antibiotic resistance genes. To assess that question, we analysed correlations between the CRISPR-Cas, anti-CRISPR and antibiotic resistance gene content of 104 947 reference genomes, including 5677 different species. In most species, the presence of CRISPR-Cas systems did not correlate with the presence of antibiotic resistance genes. However, in some clinically important species, we observed either a positive or negative correlation of CRISPR-Cas with antibiotic resistance genes. Anti-CRISPR genes were common enough in four species to be analysed. In Pseudomonas aeruginosa, the presence of anti-CRISPRs was associated with antibiotic resistance genes. This analysis indicates that the role of CRISPR-Cas and anti-CRISPRs in the spread of antibiotic resistance is likely to be very different in particular pathogenic species and clinical environments. This article is part of a discussion meeting issue 'The ecology and evolution of prokaryotic CRISPR-Cas adaptive immune systems'.
CRISPR-Cas 系统广泛存在于细菌和古菌的基因组中,在其作为噬菌体防御的典型作用中,它们赋予了宿主适应性优势。然而,CRISPR-Cas 系统也可能阻碍潜在有益基因的摄取。在抗生素选择的情况下尤其如此,因为阻止抗生素耐药基因的摄取可能是有害的。在这些进化动态中,新发现的特征是抗 CRISPR 基因,它可以抑制特定的 CRISPR-Cas 系统。我们假设,抗生素耐药性的选择可能导致了那些含有 CRISPR-Cas 系统和水平获得抗生素耐药基因的基因组中抗 CRISPR 基因的积累。为了评估这个问题,我们分析了 104947 个参考基因组中 CRISPR-Cas、抗 CRISPR 和抗生素耐药基因含量之间的相关性,其中包括 5677 个不同的物种。在大多数物种中,CRISPR-Cas 系统的存在与抗生素耐药基因的存在没有相关性。然而,在一些临床上重要的物种中,我们观察到 CRISPR-Cas 与抗生素耐药基因之间存在正相关或负相关。在四个物种中,抗 CRISPR 基因的存在数量足够多,可以进行分析。在铜绿假单胞菌中,抗 CRISPR 的存在与抗生素耐药基因相关。这项分析表明,CRISPR-Cas 和抗 CRISPR 在抗生素耐药性传播中的作用在特定的致病物种和临床环境中可能非常不同。本文是一次讨论会议的一部分,主题是“原核 CRISPR-Cas 适应性免疫系统的生态和进化”。