Lee Taek, Ahn Jae-Hyuk, Choi Jinha, Lee Yeonju, Kim Jin-Myung, Park Chulhwan, Jang Hongje, Kim Tae-Hyung, Lee Min-Ho
Department of Chemical Engineering, Kwangwoon University, Wolgye-dong, Nowon-gu, Seoul 01899, Korea.
Department of Electronic Engineering, Kwangwoon University, Wolgye-dong, Nowon-gu, Seoul 01899, Korea.
Micromachines (Basel). 2019 Mar 22;10(3):203. doi: 10.3390/mi10030203.
During the last 30 years, the World Health Organization (WHO) reported a gradual increase in the number of patients with cardiovascular disease (CVD), not only in developed but also in developing countries. In particular, acute myocardial infarction (AMI) is one of the severe CVDs because of the high death rate, damage to the body, and various complications. During these harmful effects, rapid diagnosis of AMI is key for saving patients with CVD in an emergency. The prompt diagnosis and proper treatment of patients with AMI are important to increase the survival rate of these patients. To treat patients with AMI quickly, detection of a CVD biomarker at an ultra-low concentration is essential. Cardiac troponins (cTNs), cardiac myoglobin (cMB), and creatine kinase MB are typical biomarkers for AMI detection. An increase in the levels of those biomarkers in blood implies damage to cardiomyocytes and thus is related to AMI progression. In particular, cTNs are regarded as a gold standard biomarker for AMI diagnosis. The conventional TN detection system for detection of AMI requires long measurement time and is labor-intensive and tedious. Therefore, the demand for sensitive and selective TN detection techniques is increasing at present. To meet this demand, several approaches and methods have been applied to develop a TN detection system based on a nanostructure. In the present review, the authors reviewed recent advances in TN biosensors with a focus on four detection systems: (1) An electrochemical (EC) TN nanobiosensor, (2) field effect transistor (FET)-based TN nanobiosensor, (3) surface plasmon resonance (SPR)-based TN nanobiosensor and (4) surface enhanced Raman spectroscopy (SERS)-based TN nanobiosensor.
在过去30年里,世界卫生组织(WHO)报告称,心血管疾病(CVD)患者数量逐渐增加,不仅在发达国家如此,发展中国家亦是如此。特别是急性心肌梗死(AMI),因其高死亡率、对身体的损害以及各种并发症,是严重的心血管疾病之一。在这些有害影响中,急性心肌梗死的快速诊断是在紧急情况下挽救心血管疾病患者的关键。急性心肌梗死患者的及时诊断和恰当治疗对于提高这些患者的生存率至关重要。为了快速治疗急性心肌梗死患者,超低浓度心血管疾病生物标志物的检测至关重要。心肌肌钙蛋白(cTNs)、心肌肌红蛋白(cMB)和肌酸激酶同工酶MB是检测急性心肌梗死的典型生物标志物。血液中这些生物标志物水平的升高意味着心肌细胞受损,因此与急性心肌梗死的进展有关。特别是,心肌肌钙蛋白被视为急性心肌梗死诊断的金标准生物标志物。用于检测急性心肌梗死的传统肌钙蛋白检测系统需要较长的测量时间,且劳动强度大、操作繁琐。因此,目前对灵敏且选择性的肌钙蛋白检测技术的需求不断增加。为满足这一需求,已应用多种方法来开发基于纳米结构的肌钙蛋白检测系统。在本综述中,作者回顾了肌钙蛋白生物传感器的最新进展,重点关注四种检测系统:(1)电化学(EC)肌钙蛋白纳米生物传感器,(2)基于场效应晶体管(FET)的肌钙蛋白纳米生物传感器,(3)基于表面等离子体共振(SPR)的肌钙蛋白纳米生物传感器和(4)基于表面增强拉曼光谱(SERS)的肌钙蛋白纳米生物传感器。