Suppr超能文献

基于石墨烯量子点的电化学生物传感平台用于急性心肌梗死的早期检测。

Graphene Quantum Dots-Based Electrochemical Biosensing Platform for Early Detection of Acute Myocardial Infarction.

机构信息

Department of Materials and London Centre for Nanotechnology, Imperial College London, London SW7 2AZ, UK.

College of Engineering, Swansea University, Wales SA1 8EN, UK.

出版信息

Biosensors (Basel). 2022 Jan 28;12(2):77. doi: 10.3390/bios12020077.

Abstract

Heart failure resulting from acute myocardial infarction (AMI) is an important global health problem. Treatments of heart failure and AMI have improved significantly over the past two decades; however, the available diagnostic tests only give limited insights into these heterogeneous conditions at a reversible stage and are not precise enough to evaluate the status of the tissue at high risk. Innovative diagnostic tools for more accurate, more reliable, and early diagnosis of AMI are urgently needed. A promising solution is the timely identification of prognostic biomarkers, which is crucial for patients with AMI, as myocardial dysfunction and infarction lead to more severe and irreversible changes in the cardiovascular system over time. The currently available biomarkers for AMI detection include cardiac troponin I (cTnI), cardiac troponin T (cTnT), myoglobin, lactate dehydrogenase, C-reactive protein, and creatine kinase and myoglobin. Most recently, electrochemical biosensing technologies coupled with graphene quantum dots (GQDs) have emerged as a promising platform for the identification of troponin and myoglobin. The results suggest that GQDs-integrated electrochemical biosensors can provide useful prognostic information about AMI at an early, reversible, and potentially curable stage. GQDs offer several advantages over other nanomaterials that are used for the electrochemical detection of AMI such as strong interactions between cTnI and GQDs, low biomarker consumption, and reusability of the electrode; graphene-modified electrodes demonstrate excellent electrochemical responses due to the conductive nature of graphene and other features of GQDs (e.g., high specific surface area, π-π interactions with the analyte, facile electron-transfer mechanisms, size-dependent optical features, interplay between bandgap and photoluminescence, electrochemical luminescence emission capability, biocompatibility, and ease of functionalization). Other advantages include the presence of functional groups such as hydroxyl, carboxyl, carbonyl, and epoxide groups, which enhance the solubility and dispersibility of GQDs in a wide variety of solvents and biological media. In this perspective article, we consider the emerging knowledge regarding the early detection of AMI using GQDs-based electrochemical sensors and address the potential role of this sensing technology which might lead to more efficient care of patients with AMI.

摘要

由急性心肌梗死(AMI)引起的心力衰竭是一个重要的全球健康问题。在过去的二十年中,心力衰竭和 AMI 的治疗有了显著的改善;然而,现有的诊断测试仅在可逆转阶段对这些异质情况提供有限的了解,并且不够精确,无法评估高风险组织的状态。迫切需要创新的诊断工具,以更准确、更可靠、更早地诊断 AMI。一种有前途的解决方案是及时识别预后生物标志物,这对 AMI 患者至关重要,因为随着时间的推移,心肌功能障碍和梗死导致心血管系统发生更严重和不可逆转的变化。目前用于 AMI 检测的生物标志物包括肌钙蛋白 I(cTnI)、肌钙蛋白 T(cTnT)、肌红蛋白、乳酸脱氢酶、C 反应蛋白和肌酸激酶及肌红蛋白。最近,电化学生物传感技术与石墨烯量子点(GQDs)结合,成为鉴定肌钙蛋白和肌红蛋白的有前途的平台。结果表明,GQDs 集成的电化学生物传感器可以在早期、可逆转和潜在可治愈阶段提供有关 AMI 的有用预后信息。与用于 AMI 的电化学检测的其他纳米材料相比,GQDs 具有几个优势,例如 cTnI 与 GQDs 之间的强相互作用、生物标志物消耗低和电极可重复使用;由于石墨烯的导电性和 GQDs 的其他特性(例如高比表面积、与分析物的π-π相互作用、易于电子转移机制、尺寸依赖性光学特性、带隙和光致发光之间的相互作用、电化学发光发射能力、生物相容性和易于功能化),石墨烯修饰电极表现出优异的电化学响应。其他优点包括存在功能基团,如羟基、羧基、羰基和环氧化物基团,这增强了 GQDs 在各种溶剂和生物介质中的溶解度和分散性。在这篇观点文章中,我们考虑了使用基于 GQDs 的电化学传感器早期检测 AMI 的新兴知识,并探讨了这种传感技术的潜在作用,这可能导致对 AMI 患者的更有效护理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bc7/8869523/5f8c4f0c9b9c/biosensors-12-00077-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验