Suppr超能文献

多层面分析尼泊尔影响儿童生长的个体、家庭和社区因素。

Multilevel analysis of individual, household, and community factors influencing child growth in Nepal.

机构信息

Department of Agricultural Economics, Purdue University, West Lafayette, IN, 47907, USA.

出版信息

BMC Pediatr. 2019 Apr 5;19(1):91. doi: 10.1186/s12887-019-1469-8.

Abstract

BACKGROUND

Childhood malnutrition and growth faltering is a serious concern in Nepal. Studies of child growth typically focus on child and mother characteristics as key factors, largely because Demographic and Health Surveys (DHS) collect data at these levels. To control for and measure the importance of higher-level factors this study supplements 2006 and 2011 DHS data for Nepal with data from coincident rounds of the Nepal Living Standards Surveys (NLSS). NLSS information is summarized at the district level and matched to children using district identifiers available in the DHS.

METHODS

The sample consists of 7533 children aged 0 to 59 months with complete anthropometric measurements from the 2006 and 2011 NDHS. These growth metrics, specifically height-for-age and weight-for-height, are used in multilevel regression models, with different group designations as upper-level denominations and different observed characteristics as upper-level predictors.

RESULTS

Characteristics of children and households explain most of the variance in height-for-age and weight-for-height, with statistically significant but relatively smaller overall contributions from community-level factors. Approximately 6% of total variance and 22% of explained variance in height-for-age z-scores occurs between districts. For weight-for-height, approximately 5% of total variance, and 35% of explained variance occurs between districts.

CONCLUSIONS

The most important district-level factors for explaining variance in linear growth and weight gain are the percentage of the population belonging to marginalized groups and the distance to the nearest hospital. Traditional determinants of child growth maintain their statistical power in the hierarchical models, underscoring their overall importance for policy attention.

摘要

背景

童年期营养不良和生长迟缓是尼泊尔面临的一个严重问题。儿童生长研究通常集中于儿童和母亲特征作为关键因素,这主要是因为人口与健康调查(DHS)在这些层面上收集数据。为了控制和衡量更高层次因素的重要性,本研究利用尼泊尔同期进行的尼泊尔生活水平调查(NLSS)的数据对尼泊尔 2006 年和 2011 年 DHS 数据进行了补充。NLSS 信息在地区层面进行总结,并使用 DHS 中提供的地区标识符与儿童相匹配。

方法

本研究的样本包括来自 2006 年和 2011 年 NDHS 的 7533 名 0 至 59 个月龄的儿童,这些儿童具有完整的人体测量数据。这些生长指标,特别是身高年龄别和体重身高别,用于多层次回归模型中,不同的分组设计作为上层类别,不同的观测特征作为上层预测因子。

结果

儿童和家庭的特征解释了身高年龄别和体重身高别差异的大部分原因,社区层面因素的总体贡献虽然具有统计学意义,但相对较小。身高年龄别 z 分数的总方差和解释方差中约有 6%和 22%发生在地区之间。对于体重身高别,总方差和解释方差中约有 5%和 35%发生在地区之间。

结论

解释线性生长和体重增加差异的最重要的地区层面因素是属于边缘化群体的人口比例和离最近医院的距离。儿童生长的传统决定因素在分层模型中保持其统计学效力,强调了它们对政策关注的总体重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04d0/6449894/c9cde01adde5/12887_2019_1469_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验