Fischell Department of Bioengineering, University of Maryland, Room 3102 A. James Clark Hall, 8278 Paint Branch Dr., College Park, MD 20742, USA.
Department of Materials Science and Engineering, University of Maryland, 4418 Stadium Dr., College Park, MD 20742, USA.
Acta Biomater. 2019 May;90:205-216. doi: 10.1016/j.actbio.2019.04.015. Epub 2019 Apr 4.
Commercially available surgical sealants for internal use either lack sufficient adhesion or produce cytotoxicity. This work describes a surgical sealant based on a polymer blend of poly(lactic-co-glycolic acid) (PLGA) and poly(ethylene glycol) (PEG) that increases wet tissue adherence by incorporation of nano-to-microscale silica particles, without significantly affecting cell viability, biodegradation rate, or local inflammation. In functional studies, PLGA/PEG/silica composite sealants produce intestinal burst pressures that are comparable to cyanoacrylate glue (160 mmHg), ∼2 times greater than the non-composite sealant (59 mmHg), and ∼3 times greater than fibrin glue (49 mmHg). The addition of silica to PLGA/PEG is compatible with a sprayable in situ deposition method called solution blow spinning and decreases coagulation time in vitro and in vivo. These improvements are biocompatible and cause minimal additional inflammation, demonstrating the potential of a simple composite design to increase adhesion to wet tissue through physical, noncovalent mechanisms and enable use in procedures requiring simultaneous occlusion and hemostasis. STATEMENT OF SIGNIFICANCE: Incorporating silica particles increases the tissue adhesion of a polymer blend surgical sealant. The particles enable interfacial physical bonding with tissue and enhance the flexibility of the bulk of the sealant, without significantly affecting cytotoxicity, inflammation, or biodegradation. These studies also demonstrate how silica particles decrease blood coagulation time. This surgical sealant improves upon conventional devices because it can be easily deposited with accuracy directly onto the surgical site as a solid polymer fiber mat. The deposition method, solution blow spinning, allows for high loading in the composite fibers, which are sprayed from a polymer blend solution containing suspended silica particles. These findings could easily be translated to other implantable or wearable devices due to the versatility of silica particles.
市售的用于内部使用的外科密封剂要么缺乏足够的附着力,要么产生细胞毒性。本工作描述了一种基于聚(乳酸-共-乙醇酸)(PLGA)和聚乙二醇(PEG)的聚合物共混物的外科密封剂,该密封剂通过掺入纳米到微米级的硅颗粒来增加湿组织的附着力,而不会显著影响细胞活力、生物降解率或局部炎症。在功能研究中,PLGA/PEG/二氧化硅复合密封剂产生的肠爆裂压力可与氰基丙烯酸酯胶(160mmHg)相媲美,比非复合密封剂(59mmHg)高约 2 倍,比纤维蛋白胶(49mmHg)高约 3 倍。PLGA/PEG 中添加二氧化硅与称为溶液吹纺的可喷涂原位沉积方法兼容,并降低体外和体内的凝血时间。这些改进是生物相容的,并且引起最小的额外炎症,表明通过物理、非共价机制增加对湿组织的附着力的简单复合设计的潜力,并能够用于需要同时闭塞和止血的手术。
掺入二氧化硅颗粒可增加聚合物共混物外科密封剂的组织附着力。这些颗粒能够与组织进行界面物理结合,并增强密封剂本体的柔韧性,而不会显著影响细胞毒性、炎症或生物降解。这些研究还表明了二氧化硅颗粒如何降低血液凝固时间。这种外科密封剂优于传统设备,因为它可以作为固体聚合物纤维垫准确地直接沉积在手术部位。沉积方法,溶液吹纺,允许在复合纤维中进行高负载,复合纤维是从含有悬浮二氧化硅颗粒的聚合物共混物溶液中喷涂出来的。由于二氧化硅颗粒的多功能性,这些发现很容易转化为其他可植入或可穿戴设备。