Suppr超能文献

采用探索性结构方程建模双因素分析方法揭示倦怠、抑郁和焦虑量表测量的内容。

An exploratory structural equation modeling bi-factor analytic approach to uncovering what burnout, depression, and anxiety scales measure.

机构信息

Department of Psychology.

Department of Educational Psychology, The Graduate Center of the City University of New York.

出版信息

Psychol Assess. 2019 Aug;31(8):1073-1079. doi: 10.1037/pas0000721. Epub 2019 Apr 8.

Abstract

In this study, we addressed the ongoing debate about what burnout and depression scales measure by conducting an exploratory structural equation modeling (ESEM) bifactor analysis. A sample of 734 U.S. teachers completed a survey that included the Center for Epidemiologic Studies Depression scale (CES-D-10), the depression module of the Patient Health Questionnaire (PHQ-9), the Generalized Anxiety Disorder scale (GAD-7), and the Maslach Burnout Inventory (MBI), which contains emotional exhaustion (EE), depersonalization (DP), and (diminished) personal accomplishment (PA) subscales. Job adversity and workplace support were additionally measured for the purpose of a nomological network analysis. EE, burnout's core, was more highly correlated with the depression and anxiety scales than it was with DP and PA, even with controls for item content overlap. The CES-D-10, PHQ-9, GAD-7, and EE subscale of the MBI were similarly related to job adversity and workplace support. ESEM bifactor analysis revealed that the CES-D-10, PHQ-9, GAD-7, and EE items loaded highly on a general factor, which we labeled nonspecific psychological distress (NSPD). We conclude that depression, anxiety, and EE scales reflect NSPD. DP items largely reflect two factors, NSPD and depersonalization, about equally. PA items were found to be less related to NSPD. With respect to the debate surrounding burnout-depression overlap, our findings do not support the view that the burnout construct represents a syndrome that consists of EE, DP, and diminished PA and excludes (or does not primarily include) depressive symptoms. (PsycINFO Database Record (c) 2019 APA, all rights reserved).

摘要

在这项研究中,我们通过进行探索性结构方程建模(ESEM)双因素分析来解决关于倦怠和抑郁量表测量内容的持续争论。我们的样本包括 734 名美国教师,他们完成了一项调查,其中包括流行病学研究中心抑郁量表(CES-D-10)、患者健康问卷抑郁模块(PHQ-9)、广泛性焦虑障碍量表(GAD-7)和 Maslach 倦怠量表(MBI),该量表包含情绪耗竭(EE)、去人性化(DP)和(减少的)个人成就感(PA)子量表。此外,还测量了工作逆境和工作场所支持,以便进行规范网络分析。EE 是倦怠的核心,它与抑郁和焦虑量表的相关性高于与 DP 和 PA 的相关性,即使考虑了项目内容重叠的控制。CES-D-10、PHQ-9、GAD-7 和 MBI 的 EE 子量表与工作逆境和工作场所支持也有类似的关系。ESEM 双因素分析显示,CES-D-10、PHQ-9、GAD-7 和 EE 项目高度加载于一个通用因素上,我们将其标记为非特异性心理困扰(NSPD)。我们得出结论,抑郁、焦虑和 EE 量表反映了 NSPD。DP 项目主要反映了 NSPD 和去人性化两个因素,两者大致相等。PA 项目与 NSPD 的相关性较低。关于倦怠和抑郁重叠的争论,我们的研究结果不支持这样一种观点,即倦怠结构代表一种综合征,由 EE、DP 和减少的 PA 组成,不包括(或主要不包括)抑郁症状。(PsycINFO 数据库记录(c)2019 APA,保留所有权利)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验