Suppr超能文献

微生理系统监测:传感器集成与实时数据分析,实现自主决策。

Monitoring of Microphysiological Systems: Integrating Sensors and Real-Time Data Analysis toward Autonomous Decision-Making.

机构信息

Joint Department of Biomedical Engineering , North Carolina State University and University of North Carolina, Chapel Hill , 911 Oval Drive , Raleigh , North Carolina 27695 , United States.

Department of Electrical & Computer Engineering , North Carolina State University , 890 Oval Drive , Raleigh , North Carolina 27695 , United States.

出版信息

ACS Sens. 2019 Jun 28;4(6):1454-1464. doi: 10.1021/acssensors.8b01549. Epub 2019 Apr 19.

Abstract

Microphysiological systems replicate human organ function and are promising technologies for discovery of translatable biomarkers, pharmaceuticals, and regenerative therapies. Because microphysiological systems require complex microscale anatomical structures and heterogeneous cell populations, a major challenge remains to manufacture and operate these products with reproducible and standardized function. In this Perspective, three stages of microphysiological system monitoring, including process, development, and function, are assessed. The unique features and remaining technical challenges for the required sensors are discussed. Monitoring of microphysiological systems requires nondestructive, continuous biosensors and imaging techniques. With such tools, the extent of cellular and tissue development, as well as function, can be autonomously determined and optimized by correlating physical and chemical sensor outputs with markers of physiological performance. Ultimately, data fusion and analyses across process, development, and function monitors can be implemented to adopt microphysiological systems for broad research and commercial applications.

摘要

微生理系统复制了人类器官的功能,是发现可转化的生物标志物、药物和再生疗法的有前途的技术。由于微生理系统需要复杂的微观解剖结构和异质细胞群体,因此仍然面临着以可重复和标准化的功能制造和操作这些产品的主要挑战。在本观点中,评估了微生理系统监测的三个阶段,包括过程、开发和功能。讨论了所需传感器的独特特征和剩余技术挑战。微生理系统的监测需要非破坏性的、连续的生物传感器和成像技术。有了这些工具,可以通过将物理和化学传感器输出与生理性能的标志物相关联,自主确定和优化细胞和组织发育以及功能的程度。最终,可以在过程、开发和功能监测器之间实施数据融合和分析,以采用微生理系统进行广泛的研究和商业应用。

相似文献

5
Self-contained, low-cost Body-on-a-Chip systems for drug development.用于药物研发的独立式低成本芯片人体系统。
Exp Biol Med (Maywood). 2017 Nov;242(17):1701-1713. doi: 10.1177/1535370217694101. Epub 2017 Feb 17.
7
Gastrointestinal microphysiological systems.胃肠道微生理系统
Exp Biol Med (Maywood). 2017 Oct;242(16):1633-1642. doi: 10.1177/1535370217710638. Epub 2017 May 23.
10
Organs-on-chips: Progress, challenges, and future directions.芯片上的器官:进展、挑战及未来方向。
Exp Biol Med (Maywood). 2017 Oct;242(16):1573-1578. doi: 10.1177/1535370217700523. Epub 2017 Mar 26.

引用本文的文献

4
Multi-cellular engineered living systems to assess reproductive toxicology.多细胞工程化活体系统评估生殖毒理学。
Reprod Toxicol. 2024 Aug;127:108609. doi: 10.1016/j.reprotox.2024.108609. Epub 2024 May 16.
7
Organ-on-a-chip meets artificial intelligence in drug evaluation.器官芯片与药物评价中的人工智能相遇。
Theranostics. 2023 Aug 15;13(13):4526-4558. doi: 10.7150/thno.87266. eCollection 2023.
10
Role of Polymers in Microfluidic Devices.聚合物在微流控设备中的作用。
Polymers (Basel). 2022 Nov 25;14(23):5132. doi: 10.3390/polym14235132.

本文引用的文献

4
Deep Learning with Microfluidics for Biotechnology.微流控技术在生物技术中的深度学习应用。
Trends Biotechnol. 2019 Mar;37(3):310-324. doi: 10.1016/j.tibtech.2018.08.005. Epub 2018 Oct 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验