Duggento Andrea, Valenza Gaetano, Passamonti Luca, Nigro Salvatore, Bianco Maria Giovanna, Guerrisi Maria, Barbieri Riccardo, Toschi Nicola
Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy.
Department of Information Engineering and Research Centre "E. Piaggio", University of Pisa, 56122 Pisa, Italy.
Entropy (Basel). 2019 Jun 26;21(7):629. doi: 10.3390/e21070629.
High-frequency neuroelectric signals like electroencephalography (EEG) or magnetoencephalography (MEG) provide a unique opportunity to infer causal relationships between local activity of brain areas. While causal inference is commonly performed through classical Granger causality (GC) based on multivariate autoregressive models, this method may encounter important limitations (e.g., data paucity) in the case of high dimensional data from densely connected systems like the brain. Additionally, physiological signals often present long-range dependencies which commonly require high autoregressive model orders/number of parameters. We present a generalization of autoregressive models for GC estimation based on Wiener-Volterra decompositions with Laguerre polynomials as basis functions. In this basis, the introduction of only one additional global parameter allows to capture arbitrary long dependencies without increasing model order, hence retaining model simplicity, linearity and ease of parameters estimation. We validate our method in synthetic data generated from families of complex, densely connected networks and demonstrate superior performance as compared to classical GC. Additionally, we apply our framework to studying the directed human brain connectome through MEG data from 89 subjects drawn from the Human Connectome Project (HCP) database, showing that it is able to reproduce current knowledge as well as to uncover previously unknown directed influences between cortical and limbic brain regions.
像脑电图(EEG)或脑磁图(MEG)这样的高频神经电信号为推断脑区局部活动之间的因果关系提供了独特的机会。虽然因果推断通常是通过基于多元自回归模型的经典格兰杰因果关系(GC)来进行的,但在处理来自像大脑这样高度连接系统的高维数据时,这种方法可能会遇到重要的局限性(例如,数据匮乏)。此外,生理信号通常呈现出长程依赖性,这通常需要高自回归模型阶数/参数数量。我们提出了一种基于以拉盖尔多项式为基函数的维纳 - 沃尔泰拉分解的用于GC估计的自回归模型的推广方法。在此基础上,仅引入一个额外的全局参数就能够捕获任意长的依赖性,而无需增加模型阶数,从而保持模型的简单性以及线性和参数估计的简便性。我们在由复杂、高度连接的网络族生成的合成数据中验证了我们的方法,并证明其与经典GC相比具有卓越的性能。此外,我们将我们的框架应用于通过来自人类连接体项目(HCP)数据库的89名受试者的MEG数据来研究人类大脑连接组的方向性,结果表明它能够重现当前的知识,同时揭示皮质和边缘脑区之间以前未知的方向性影响。