Suppr超能文献

一种用于智能网联汽车的统一多目标定位框架。

A Unified Multiple-Target Positioning Framework for Intelligent Connected Vehicles.

作者信息

Xiao Zhongyang, Yang Diange, Wen Fuxi, Jiang Kun

机构信息

State Key Laboratory of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China.

Department of Electrical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.

出版信息

Sensors (Basel). 2019 Apr 26;19(9):1967. doi: 10.3390/s19091967.

Abstract

Future intelligent transport systems depend on the accurate positioning of multiple targets in the road scene, including vehicles and all other moving or static elements. The existing self-positioning capability of individual vehicles remains insufficient. Also, bottlenecks in developing on-board perception systems stymie further improvements in the precision and integrity of positioning targets. Vehicle-to-everything (V2X) communication, which is fast becoming a standard component of intelligent and connected vehicles, renders new sources of information such as dynamically updated high-definition (HD) maps accessible. In this paper, we propose a unified theoretical framework for multiple-target positioning by fusing multi-source heterogeneous information from the on-board sensors and V2X technology of vehicles. Numerical and theoretical studies are conducted to evaluate the performance of the framework proposed. With a low-cost global navigation satellite system (GNSS) coupled with an initial navigation system (INS), on-board sensors, and a normally equipped HD map, the precision of multiple-target positioning attained can meet the requirements of high-level automated vehicles. Meanwhile, the integrity of target sensing is significantly improved by the sharing of sensor information and exploitation of map data. Furthermore, our framework is more adaptable to traffic scenarios when compared with state-of-the-art techniques.

摘要

未来的智能交通系统依赖于道路场景中多个目标的精确定位,这些目标包括车辆以及所有其他移动或静态元素。目前单个车辆的自我定位能力仍然不足。此外,车载感知系统发展中的瓶颈阻碍了定位目标精度和完整性的进一步提高。车与万物(V2X)通信正迅速成为智能网联汽车的标准组件,它使动态更新的高清(HD)地图等新信息源变得可用。在本文中,我们提出了一个统一的理论框架,用于通过融合来自车辆车载传感器和V2X技术的多源异构信息进行多目标定位。我们进行了数值和理论研究来评估所提出框架的性能。通过结合低成本全球导航卫星系统(GNSS)和初始导航系统(INS)、车载传感器以及通常配备的高清地图,所实现的多目标定位精度能够满足高级自动驾驶车辆的要求。同时,通过传感器信息共享和地图数据利用,目标感知的完整性得到显著提高。此外,与现有技术相比,我们的框架对交通场景的适应性更强。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50ee/6539553/df33646e77ce/sensors-19-01967-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验