Suppr超能文献

在胁迫条件下户外培养小球藻作为生物燃料的原料。

Outdoor cultivation of the green microalga Chlorella vulgaris under stress conditions as a feedstock for biofuel.

机构信息

Botany Department, Faculty of Science, Tanta University, Tanta, Egypt.

National Research Center, Algal Biotechnology Unit, Giza, Cairo, Egypt.

出版信息

Environ Sci Pollut Res Int. 2019 Jun;26(18):18520-18532. doi: 10.1007/s11356-019-05108-y. Epub 2019 May 2.

Abstract

The present work investigated the potential of the green alga Chlorella vulgaris to produce high-quality biofuel under culture stress conditions. The cultivation was carried out in a 1000 l open plate tank system, which provides biomass yields comparable to open pond systems, but with less area needed. Algal biomass and lipid content were measured repeatedly. We compared the two solvent systems n-hexane and hexane/isopropanol (HIP) for extraction efficiency of lipids and applied three different extraction methods Soxhlet, soaking, and soaking followed by Soxhlet (soak-Sox). The combination of the HIP solvent and the soak-Sox provided the highest lipid yield (15.8 ± 0.174). Volumetric biomass and lipid productivity were 0.201 g l day and 31.71 mg l day, respectively, whereas areal biomass and lipid productivity were 25.73 g m day and 4.066 g m day, respectively. The fatty acid profile by means of gas chromatography resulted in seven fatty acids from C to C. The most abundant fatty acid methyl esters (FAMES) were palmitic (C16:0), oleic (C18:1), and stearic (C18:0) acids. Lipid synthesis enhanced by optimizing the Kuhl growth medium with replacing nitrate by urea (50% N compared to the original recipe) increased salt content (10 g/l NaCl), ferrous sulfate (0.5 g/l), and sodium acetate addition (1 g/l). With regard to density, kinematic viscosity, gravity, pour point, flash point, and cetane number, the Chlorella-biodiesel comply with ASTM and EN standards thus pointing at the high potential of lipids synthesized by Chlorella as a feedstock for biodiesel production.

摘要

本工作研究了绿藻小球藻在培养应激条件下生产高质量生物燃料的潜力。培养在 1000 l 开放式平板罐系统中进行,该系统提供与开放式池塘系统相当的生物质产量,但所需面积较小。反复测量藻类生物质和脂质含量。我们比较了正己烷和正己烷/异丙醇(HIP)这两种溶剂系统的提取脂质效率,并应用了三种不同的提取方法索氏提取、浸泡和浸泡后索氏提取(浸泡-索氏)。HIP 溶剂和浸泡-索氏提取的组合提供了最高的脂质产率(15.8±0.174)。体积生物质和脂质生产力分别为 0.201 g l day 和 31.71 mg l day,而面积生物质和脂质生产力分别为 25.73 g m day 和 4.066 g m day。通过气相色谱法得到脂肪酸谱,结果表明有七种从 C 到 C 的脂肪酸。最丰富的脂肪酸甲酯(FAMES)是棕榈酸(C16:0)、油酸(C18:1)和硬脂酸(C18:0)。通过用尿素替代硝酸盐(与原始配方相比为 50% N)优化 Kuhl 生长培养基来优化脂质合成,增加了盐含量(10 g/l NaCl)、硫酸亚铁(0.5 g/l)和醋酸钠添加(1 g/l)。就密度、运动粘度、重力、倾点、闪点和十六烷值而言,小球藻生物柴油符合 ASTM 和 EN 标准,这表明小球藻合成的脂质作为生物柴油生产原料具有很高的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验