Suppr超能文献

三阴性乳腺癌中的放射组学:该侵袭性疾病亚型的新视野

Radiomics in Triple Negative Breast Cancer: New Horizons in an Aggressive Subtype of the Disease.

作者信息

Mireștean Camil Ciprian, Volovăț Constantin, Iancu Roxana Irina, Iancu Dragoș Petru Teodor

机构信息

Department of Oncology and Radiotherapy, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.

Department of Surgery, Railways Clinical Hospital, 700506 Iasi, Romania.

出版信息

J Clin Med. 2022 Jan 26;11(3):616. doi: 10.3390/jcm11030616.

Abstract

In the last decade, the analysis of the medical images has evolved significantly, applications and tools capable to extract quantitative characteristics of the images beyond the discrimination capacity of the investigator's eye being developed. The applications of this new research field, called radiomics, presented an exponential growth with direct implications in the diagnosis and prediction of response to therapy. Triple negative breast cancer (TNBC) is an aggressive breast cancer subtype with a severe prognosis, despite the aggressive multimodal treatments applied according to the guidelines. Radiomics has already proven the ability to differentiate TNBC from fibroadenoma. Radiomics features extracted from digital mammography may also distinguish between TNBC and non-TNBC. Recent research has identified three distinct subtypes of TNBC using IRM breast images voxel-level radiomics features (size/shape related features, texture features, sharpness). The correlation of these TNBC subtypes with the clinical response to neoadjuvant therapy may lead to the identification of biomarkers in order to guide the clinical decision. Furthermore, the variation of some radiomics features in the neoadjuvant settings provides a tool for the rapid evaluation of treatment efficacy. The association of radiomics features with already identified biomarkers can generate complex predictive and prognostic models. Standardization of image acquisition and also of radiomics feature extraction is required to validate this method in clinical practice.

摘要

在过去十年中,医学图像分析取得了显著进展,能够提取超出研究者肉眼辨别能力的图像定量特征的应用和工具不断涌现。这个被称为放射组学的新研究领域的应用呈指数级增长,对诊断和治疗反应预测有着直接影响。三阴性乳腺癌(TNBC)是一种侵袭性乳腺癌亚型,预后严重,尽管按照指南进行了积极的多模式治疗。放射组学已证明有能力区分TNBC和纤维腺瘤。从数字化乳腺摄影中提取的放射组学特征也可能区分TNBC和非TNBC。最近的研究利用IRM乳腺图像体素级放射组学特征(大小/形状相关特征、纹理特征、清晰度)识别出了TNBC的三种不同亚型。这些TNBC亚型与新辅助治疗临床反应的相关性可能会促成生物标志物的识别,从而指导临床决策。此外,新辅助治疗环境中一些放射组学特征的变化为快速评估治疗效果提供了一种工具。放射组学特征与已识别的生物标志物的关联可以生成复杂的预测和预后模型。为了在临床实践中验证该方法,需要对图像采集以及放射组学特征提取进行标准化。

相似文献

7
Radiogenomic analysis reveals tumor heterogeneity of triple-negative breast cancer.
Cell Rep Med. 2022 Jul 19;3(7):100694. doi: 10.1016/j.xcrm.2022.100694.
9

引用本文的文献

1
Deep Learning and Radiomics in Triple-Negative Breast Cancer: Predicting Long-Term Prognosis and Clinical Outcomes.
J Multidiscip Healthc. 2025 Jan 21;18:319-327. doi: 10.2147/JMDH.S509004. eCollection 2025.
2
3
4
Adaptive radiotherapy for breast cancer.
Clin Transl Radiat Oncol. 2022 Dec 22;39:100564. doi: 10.1016/j.ctro.2022.100564. eCollection 2023 Mar.

本文引用的文献

3
Radiomics Analysis Based on Automatic Image Segmentation of DCE-MRI for Predicting Triple-Negative and Nontriple-Negative Breast Cancer.
Comput Math Methods Med. 2021 Aug 10;2021:2140465. doi: 10.1155/2021/2140465. eCollection 2021.
4
Triple Negative Breast Cancer: A Mountain Yet to Be Scaled Despite the Triumphs.
Cancers (Basel). 2021 Jul 23;13(15):3697. doi: 10.3390/cancers13153697.
5
Co-clinical FDG-PET radiomic signature in predicting response to neoadjuvant chemotherapy in triple-negative breast cancer.
Eur J Nucl Med Mol Imaging. 2022 Jan;49(2):550-562. doi: 10.1007/s00259-021-05489-8. Epub 2021 Jul 30.
6
Artificial intelligence applications in medical imaging: A review of the medical physics research in Italy.
Phys Med. 2021 Mar;83:221-241. doi: 10.1016/j.ejmp.2021.04.010. Epub 2021 May 2.
7
Radiomic Feature Reduction Approach to Predict Breast Cancer by Contrast-Enhanced Spectral Mammography Images.
Diagnostics (Basel). 2021 Apr 10;11(4):684. doi: 10.3390/diagnostics11040684.
9
A Systematic Review of PET Textural Analysis and Radiomics in Cancer.
Diagnostics (Basel). 2021 Feb 23;11(2):380. doi: 10.3390/diagnostics11020380.
10
Radiomic Analysis in Contrast-Enhanced Spectral Mammography for Predicting Breast Cancer Histological Outcome.
Diagnostics (Basel). 2020 Sep 17;10(9):708. doi: 10.3390/diagnostics10090708.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验