Suppr超能文献

在确保模型恒定性的同时缩放潜在变量的方差。

Scaling the Variance of a Latent Variable While Assuring Constancy of the Model.

作者信息

Schweizer Karl, Troche Stefan J, DiStefano Christine

机构信息

Institute of Psychology, Goethe University Frankfurt, Frankfurt, Germany.

Department of Psychology, University of Bern, Bern, Switzerland.

出版信息

Front Psychol. 2019 Apr 24;10:887. doi: 10.3389/fpsyg.2019.00887. eCollection 2019.

Abstract

This paper investigates how the major outcome of a confirmatory factor investigation is preserved when scaling the variance of a latent variable by the various scaling methods. A constancy framework, based upon the underlying factor analysis formula that enables scaling by modifying components through scalar multiplication, is described; a proof is included to demonstrate the constancy property of the framework. It provides the basis for a scaling method that enables the comparison of the contribution of different latent variables of the same confirmatory factor model to observed scores, as for example, the contributions of trait and method latent variables. Furthermore, it is shown that available scaling methods are in line with this constancy framework and that the criterion number included in some scaling methods enables modifications. The impact of the number of manifest variables on the scaled variance parameter can be modified and the range of possible values. It enables the adaptation of scaling methods to the requirements of the field of application.

摘要

本文研究了在通过各种缩放方法对潜在变量的方差进行缩放时,验证性因素研究的主要结果是如何保持的。描述了一个基于潜在因素分析公式的恒定性框架,该公式通过标量乘法修改组件来实现缩放;还给出了一个证明以展示该框架的恒定性。它为一种缩放方法提供了基础,该方法能够比较同一验证性因素模型的不同潜在变量对观测分数的贡献,例如特质和方法潜在变量的贡献。此外,研究表明现有的缩放方法符合此恒定性框架,并且某些缩放方法中包含的标准数量允许进行修改。可以修改显变量数量对缩放方差参数的影响以及可能值的范围。它能够使缩放方法适应应用领域的要求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c03/6491693/fa7e3cf5624d/fpsyg-10-00887-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验