von Eye Alexander, Wiedermann Wolfgang, von Weber Stefan
Michigan State University, USA.
University of Missouri, Columbia, USA.
J Pers Oriented Res. 2023 Jun 17;9(1):17-28. doi: 10.17505/jpor.2023.25258. eCollection 2023.
In this article, we demonstrate that latent variable analysis can be of great use in person-oriented research. Starting with exploratory factor analysis of metric variables, we present an example of the problems that come with generalization of aggregate-level results to subpopulations. Oftentimes, results that are valid for populations do not represent subpopulations at all. This applies to confirmatory factor analysis as well. When variables are categorical, latent class analysis can be used to create latent variables that explain the covariation of observed variables. In an example, we demonstrate that latent class analysis can be applied to data from individuals, when the number of observation points is sufficiently large. In each case of latent variables analysis, the latent variables can be considered moderators of the structure of covariation among observed variables.
在本文中,我们证明了潜在变量分析在以人为本的研究中非常有用。从度量变量的探索性因素分析开始,我们给出了一个将总体水平结果推广到亚群体时所出现问题的例子。通常,对总体有效的结果根本不能代表亚群体。这同样适用于验证性因素分析。当变量是分类变量时,潜在类别分析可用于创建解释观测变量协变的潜在变量。在一个例子中,我们证明了当观测点数量足够大时,潜在类别分析可应用于个体数据。在潜在变量分析的每种情况下,潜在变量都可被视为观测变量间协变结构的调节变量。