State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China.
Sci China Life Sci. 2019 Jul;62(7):947-958. doi: 10.1007/s11427-019-9521-2. Epub 2019 May 10.
Land plants co-speciate with a diversity of continually expanding plant specialized metabolites (PSMs) and root microbial communities (microbiota). Homeostatic interactions between plants and root microbiota are essential for plant survival in natural environments. A growing appreciation of microbiota for plant health is fuelling rapid advances in genetic mechanisms of controlling microbiota by host plants. PSMs have long been proposed to mediate plant and single microbe interactions. However, the effects of PSMs, especially those evolutionarily new PSMs, on root microbiota at community level remain to be elucidated. Here, we discovered sesterterpenes in Arabidopsis thaliana, produced by recently duplicated prenyltransferase-terpene synthase (PT-TPS) gene clusters, with neo-functionalization. A single-residue substitution played a critical role in the acquisition of sesterterpene synthase (sesterTPS) activity in Brassicaceae plants. Moreover, we found that the absence of two root-specific sesterterpenoids, with similar chemical structure, significantly affected root microbiota assembly in similar patterns. Our results not only demonstrate the sensitivity of plant microbiota to PSMs but also establish a complete framework of host plants to control root microbiota composition through evolutionarily dynamic PSMs.
陆生植物与不断扩张的植物特化代谢产物 (PSMs) 和根微生物群落 (微生物群) 共同进化。植物与根微生物群之间的动态平衡相互作用对于植物在自然环境中的生存至关重要。人们越来越认识到微生物群对植物健康的重要性,这推动了宿主植物控制微生物群的遗传机制的快速发展。PSMs 长期以来被认为可以介导植物与单一微生物的相互作用。然而,PSMs(尤其是那些新进化的 PSMs)对群落水平的根微生物群的影响仍有待阐明。在这里,我们在拟南芥中发现了倍半萜,由最近复制的 prenyltransferase-terpene synthase (PT-TPS) 基因簇产生,并具有新功能化。单个残基的取代在芸薹科植物中获得倍半萜合酶 (sesterTPS) 活性方面发挥了关键作用。此外,我们发现两种具有相似化学结构的根特异性倍半萜的缺失,以相似的模式显著影响根微生物群的组装。我们的研究结果不仅证明了植物微生物群对 PSMs 的敏感性,而且还建立了一个完整的宿主植物框架,通过进化动态的 PSMs 来控制根微生物群的组成。