Suppr超能文献

癌症流行病学中的营养代谢组学:当前趋势、挑战和未来方向。

Nutritional Metabolomics in Cancer Epidemiology: Current Trends, Challenges, and Future Directions.

机构信息

Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.

Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.

出版信息

Curr Nutr Rep. 2019 Sep;8(3):187-201. doi: 10.1007/s13668-019-00279-z.

Abstract

PURPOSE OF REVIEW

Metabolomics offers several opportunities for advancement in nutritional cancer epidemiology; however, numerous research gaps and challenges remain. This narrative review summarizes current research, challenges, and future directions for epidemiologic studies of nutritional metabolomics and cancer.

RECENT FINDINGS

Although many studies have used metabolomics to investigate either dietary exposures or cancer, few studies have explicitly investigated diet-cancer relationships using metabolomics. Most studies have been relatively small (≤ ~ 250 cases) or have assessed a limited number of nutritional metabolites (e.g., coffee or alcohol-related metabolites). Nutritional metabolomic investigations of cancer face several challenges in study design; biospecimen selection, handling, and processing; diet and metabolite measurement; statistical analyses; and data sharing and synthesis. More metabolomics studies linking dietary exposures to cancer risk, prognosis, and survival are needed, as are biomarker validation studies, longitudinal analyses, and methodological studies. Despite the remaining challenges, metabolomics offers a promising avenue for future dietary cancer research.

摘要

目的综述

代谢组学为营养癌症流行病学的发展提供了多个机会,但仍存在许多研究空白和挑战。本综述总结了营养代谢组学与癌症的流行病学研究的当前研究、挑战和未来方向。

最近的发现

尽管许多研究已经使用代谢组学来研究饮食暴露或癌症,但很少有研究明确使用代谢组学来研究饮食与癌症之间的关系。大多数研究相对较小(≤约 250 例)或仅评估了有限数量的营养代谢物(例如,与咖啡或酒精相关的代谢物)。癌症的营养代谢组学研究在研究设计、生物样本选择、处理和处理、饮食和代谢物测量、统计分析以及数据共享和综合方面面临着几个挑战。需要更多将饮食暴露与癌症风险、预后和生存联系起来的代谢组学研究,还需要进行生物标志物验证研究、纵向分析和方法学研究。尽管仍存在挑战,但代谢组学为未来的饮食癌症研究提供了一个很有前途的途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验