Department of Botany and Plant Sciences, University of California, Riverside, CA, USA.
Center for Plant Cell Biology, University of California, Riverside, CA, USA.
Nat Nanotechnol. 2019 Jun;14(6):541-553. doi: 10.1038/s41565-019-0470-6. Epub 2019 Jun 5.
Nanobiotechnology has the potential to enable smart plant sensors that communicate with and actuate electronic devices for improving plant productivity, optimize and automate water and agrochemical allocation, and enable high-throughput plant chemical phenotyping. Reducing crop loss due to environmental and pathogen-related stresses, improving resource use efficiency and selecting optimal plant traits are major challenges in plant agriculture industries worldwide. New technologies are required to accurately monitor, in real time and with high spatial and temporal resolution, plant physiological and developmental responses to their microenvironment. Nanomaterials are allowing the translation of plant chemical signals into digital information that can be monitored by standoff electronic devices. Herein, we discuss the design and interfacing of smart nanobiotechnology-based sensors that report plant signalling molecules associated with health status to agricultural and phenotyping devices via optical, wireless or electrical signals. We describe how nanomaterial-mediated delivery of genetically encoded sensors can act as tools for research and development of smart plant sensors. We assess performance parameters of smart nanobiotechnology-based sensors in plants (for example, resolution, sensitivity, accuracy and durability) including in vivo optical nanosensors and wearable nanoelectronic sensors. To conclude, we present an integrated and prospective vision on how nanotechnology could enable smart plant sensors that communicate with and actuate electronic devices for monitoring and optimizing individual plant productivity and resource use.
纳米生物技术有可能实现智能植物传感器,这些传感器可以与电子设备进行通信并进行操作,从而提高植物的生产力,优化和自动化水和农用化学品的分配,并实现高通量的植物化学表型分析。减少因环境和病原体相关压力导致的作物损失、提高资源利用效率和选择最佳植物特性是全球植物农业产业的主要挑战。需要新技术来实时、高空间和时间分辨率地准确监测植物对其微环境的生理和发育反应。纳米材料使将植物化学信号转化为数字信息成为可能,这些信息可以通过远距离电子设备进行监测。在这里,我们讨论了智能纳米生物技术传感器的设计和接口,这些传感器通过光学、无线或电信号将与健康状况相关的植物信号分子报告给农业和表型设备。我们描述了纳米材料介导的遗传编码传感器的递呈如何可以作为智能植物传感器研发的工具。我们评估了智能纳米生物技术传感器在植物中的性能参数(例如分辨率、灵敏度、准确性和耐用性),包括体内光学纳米传感器和可穿戴纳米电子传感器。最后,我们提出了一个综合的、前瞻性的观点,即纳米技术如何能够实现与电子设备进行通信和操作的智能植物传感器,从而实现对单个植物生产力和资源利用的监测和优化。